

libWetHair

A Multi-Scale Model for Simulating Liquid-Hair Interactions

YUN (RAYMOND) FEI, HENRIQUE TELES MAIA, CHRISTOPHER BATTY, CHANGXI ZHENG, EITAN GRINSPUN COLUMBIA UNIVERSITY AND UNIVERSITY OF WATERLOO

http://libwethair.info Paper, Executables, Code, and More

cohesion

http://libwethair.info

Paper, Executables, Code, and More

flow along hairs

cohesion

http://libwethair.info

Paper, Executables, Code, and More

flow along hairs

cohesion

dripping

http://libwethair.info

Paper, Executables, Code, and More

Related Work

[Bertails-Descoubes et al. 2005]

Related Work

[Rungjiratananon et al. 2012]

[Lin 2015]

Where does the liquid live?

Relative Humidity (%)

Barba, C., et al. "Moisture sorption/desorption of protein fibres." *Thermochimica acta* 552 (2013): 70-76.

Relative Humidity (%)

Barba, C., et al. "Moisture sorption/desorption of protein fibres." *Thermochimica acta* 552 (2013): 70-76.

Relative Humidity (%)

Barba, C., et al. "Moisture sorption/desorption of protein fibres." *Thermochimica acta* 552 (2013): 70-76.

Geconds

Where does the liquid live?

Simulating Liquid on Hair Surface

Full discretized simulation is too costly X

 \checkmark

Support Inertia & Sudden Accelerations Need Surface Tension

Specifically Designed for Thin Liquid

Image Courtesy of Alexander Demianchuk / Reuters

- Support Inertia & Sudden Accelerations
- Need Surface Tension

Specifically Designed for Thin Liquid

Craster, R. V., and O. K. Matar. "On viscous beads flowing down a vertical fibre." *Journal of Fluid Mechanics* 553 (2006): 85-105.

 \checkmark

 \checkmark

- ✓ Support Inertia & Sudden Accelerations
- Need Surface Tension
- Specifically Designed for Thin Liquid

flowing down a vertical fibre." *Journal of Fluid Mechanics* 553 (2006): 85-105.

Continuity Equation for Mass

 $\frac{\partial h}{\partial t} + u \frac{\partial h}{\partial x} = 0$

Continuity Equation for Mass

 $\frac{\partial h}{\partial t} + u \frac{\partial h}{\partial x} = 0$

Continuity Equation for Mass

 $\frac{\partial h}{\partial t} + u \frac{\partial h}{\partial x} = 0$

Continuity Equation for Mass $\frac{\partial h}{\partial t} + u \frac{\partial h}{\partial x} = 0$ $h \quad u \quad liquid$ base

Reduced-Liquid Equation on Hair

Continuity Equation for Mass $\frac{\partial h}{\partial t} + u \frac{\partial h}{\partial x} = 0$ liquid h ba
Reduced-Liquid Equation on Hair

Continuity Equation for Mass

Momentum Conservation for Eulerian-on-Lagrangian Flow

Continuity Equation for Extrinsic Momentum

Fan, Ye, et al. "Eulerian-on-Lagrangian simulation." ACM Transactions on Graphics (TOG) 32.3 (2013): 22.

Ignore Hair Momentum Change

Our Method

- 1. Semi-Lagrangian advection
- 2. Add external force, pressure, and update flow velocity *u*
- 3. Solve for the continuity
 - equations
- 4. Update hair velocity.

1. Semi-Lagrangian advection

- 2. Add external force, pressure, and update flow velocity *u*
- 3. Solve for the continuity
 - equations
- 4. Update hair velocity.

- 1. Semi-Lagrangian advection
 2. Add external force, pressure, and update flow velocity u
- 3. Solve for the continuity

equations

4. Update hair velocity.

- **1. Semi-Lagrangian advection**
- 2. Add external force,

pressure, and update flow velocity *u*

- 3. Solve for the continuity equations
- 4. Update hair velocity.

Semi-Lagrangian advection
 Add external force,
 pressure, and update flow
 velocity u

 Solve for the continuity

equations

4. Update hair velocity.

New Volume ← Original + Gathered

New Momentum ← Hair + Reduced + Gathered

New Mass ← Original + Gathered

New Volume ← Original + Gathered

New Momentum ← Hair + Reduced + Gathered

New Mass ← Original + Gathered

New Volume ← Original + Gathered

New Momentum ← Hair + Reduced + Gathered

New Mass ← Original + Gathered

New Volume ← Original + Gathered

New Momentum ← Hair + Reduced + Gathered

New Mass ← Original + Gathered

New Volume \leftarrow **Original** + **Gathered**

New Momentum ← Hair + Reduced + Gathered

New Mass ← Original + Gathered

New Velocity ← Original + Gathered

New Volume - Original + Gathered

New Mass ← Original + Gathered

New Velocity ← Original + Gathered

New Volume - Original + Gathered

New Mass \leftarrow **Original + Gathered**

New Velocity ← Original + Gathered

New Volume ← Original + Gathered New Momentum ← Hair + Reduced + Gathered

New Mass \leftarrow **Original + Gathered**

New Velocity \leftarrow **Original + Gathered**

$$V_R = -\pi \int_t \int_s \frac{\partial}{\partial t} \left[(h+r)^2 - r^2 \right] \mathrm{d}s \mathrm{d}t$$

Dripping ON

ge (secs.) 0.1	0.2	0.3	0.4	0.5	0.6	0.

Hairs	
Liquid 🥆	

Real Experiment [Wang et al. 2014]

Too Costly for Practical Applications

Analytical Model

$$f ds = -\frac{\partial dE_s}{\partial d} = -\left(\frac{\partial dE_s}{\partial R} \cdot \frac{\partial R}{\partial d} + \sum_{i=1,2} \frac{\partial dE_s}{\partial \alpha_i} \cdot \frac{\partial \alpha_i}{\partial d}\right)$$

d

$$f ds = -\frac{\partial dE_s}{\partial d} = -\left(\frac{\partial dE_s}{\partial R} \cdot \frac{\partial R}{\partial d} + \sum_{i=1,2} \frac{\partial dE_s}{\partial \alpha_i} \cdot \frac{\partial \alpha_i}{\partial d}\right)$$

$$f ds = -\frac{\partial dE_s}{\partial d} = -\left(\frac{\partial dE_s}{\partial R} \cdot \frac{\partial R}{\partial d} + \sum_{i=1,2} \frac{\partial dE_s}{\partial \alpha_i} \cdot \frac{\partial \alpha_i}{\partial d}\right)$$

$$f ds = -\frac{\partial dE_s}{\partial d} = -\left(\frac{\partial dE_s}{\partial R} \cdot \frac{\partial R}{\partial d} + \sum_{i=1,2} \frac{\partial dE_s}{\partial \alpha_i} \cdot \frac{\partial \alpha_i}{\partial d}\right)$$

$$f ds = -\frac{\partial dE_s}{\partial d} = -\left(\frac{\partial dE_s}{\partial R} \cdot \frac{\partial R}{\partial d} + \sum_{i=1,2} \frac{\partial dE_s}{\partial \alpha_i} \cdot \frac{\partial \alpha_i}{\partial d}\right)$$

d

Interpolate between Cohesive & Repulsive Effect

Discretized Cohesive Force

Discontinuous Motion

Naïve Solution

Naïve Solution

Over-Sampling

Cohesion OFF

Constant Quadrature

Variable Quadrature₄₈

Preconditioning with Local Solves

Pre-factorized LDLT in Parallel

Complicated Cohesion Effects

Water on Mat of Fur

1/2x replay

Whipping Wet Hairs

Related to [Daviet & Bertails-Descoubes 2017, Tampubolon et al. 2017]

Reversible Pressure Gradient (Buoyancy) Viscous Drag Force (Friction)

Related to [Daviet & Bertails-Descoubes 2017, Tampubolon et al. 2017]

Reversible Pressure Gradient (Buoyancy) Viscous Drag Force (Friction)

Related to [Daviet & Bertails-Descoubes 2017, Tampubolon et al. 2017]

Reversible Pressure Gradient (Buoyancy) Viscous Drag Force (Friction)

Related to [Daviet & Bertails-Descoubes 2017, Tampubolon et al. 2017]

Reversible Pressure Gradient (Buoyancy) Quadratic Drag Force (Friction + Wake Turbulence)

Future Work

Quantitative validation w. r. t. real world.

More effective surface reconstruction.

Quantitative validation w. r. t. real world.

More effective surface reconstruction.

Quantitative validation w. r. t. real world.

More effective surface reconstruction.

Quantitative validation w. r. t. real world.

More effective surface reconstruction.

Executables & Code

http://libwethair.info

Acknowledgements

Peter Yichen Chen Ryan Goldade Xinxin Zhang Fang Da Bo Zhu Daisy Nyugen Derrick Lim Cristin Barghiel Monika Janek Silvina Rocca

NSF Grant Nos.: 1409286, 1319483, 1453101 Graduate Student Research Fellowship No. DGE-16-44869 Natural Sciences and Engineering Research Council of Canada Grant No. RGPIN-04360-2014 National GEM Consortium, Pixar, and Adobe

Surface Reconstruction / Rendering: Houdini Tree Structure Experiment Bico, José, et al. "Adhesion: elastocapillary coalescence in wet hair." *Nature*, 432.7018 (2004): 690-690.