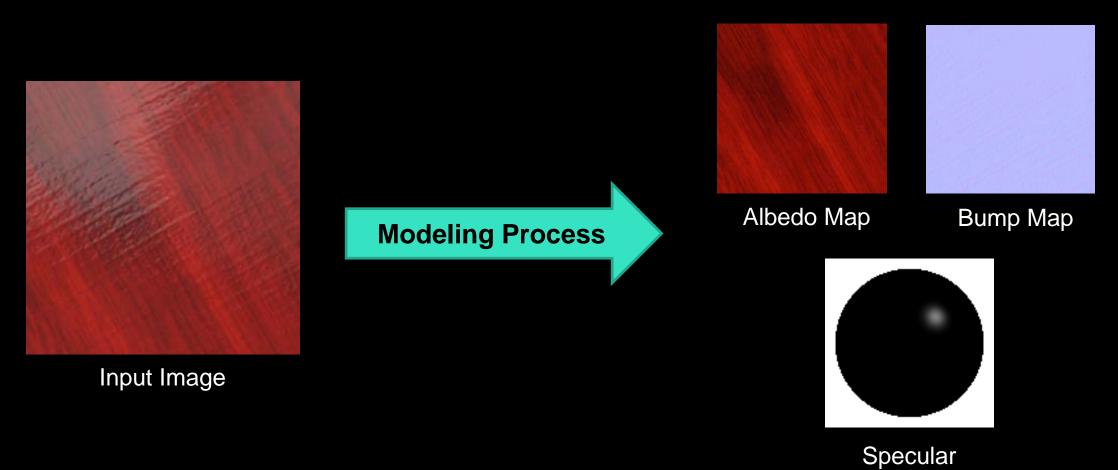


Modeling Surface Appearance from a Single Photograph using Self-Augmented Convolutional Neural Networks

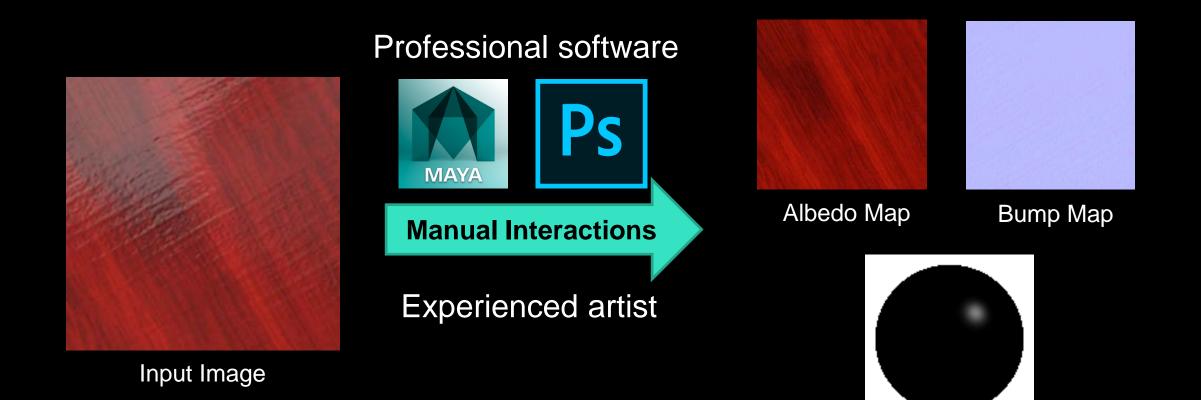
Xiao Li^{1,2} Yue Dong² Pieter Peers³ Xin Tong² ¹ University of Science and Technology of China ² Microsoft Research, Beijing ³ College of William & Mary

Ē

Appearance Modeling from Single Image

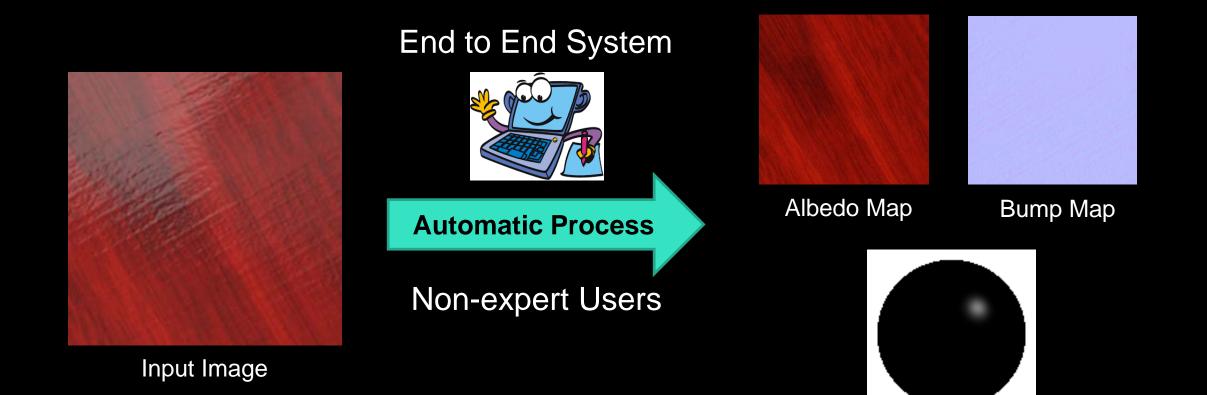


Artists' Solution



Specular

Our Goal



Specular

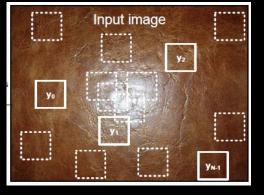
[Dong 2011]

Related Work

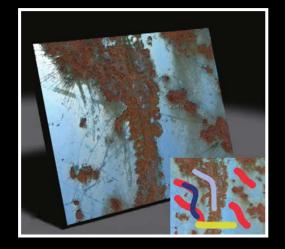
Single image appearance modeling

- Active illumination / Known lighting
 - [Wang 2016]; [Xu 2016]
- Stationary / Stochastic Textures

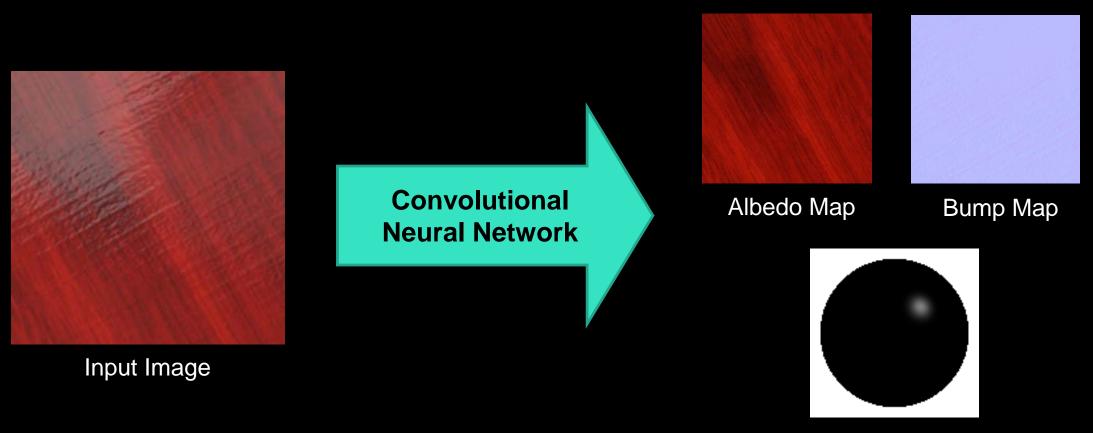
 [Wang 2011]; [Aittala 2016]
- Diffuse / homogeneous BRDF
 [Barron 2015]; [Shi 2017]
- Manual interaction
 - [Dong 2011]



[Aittala 2016]

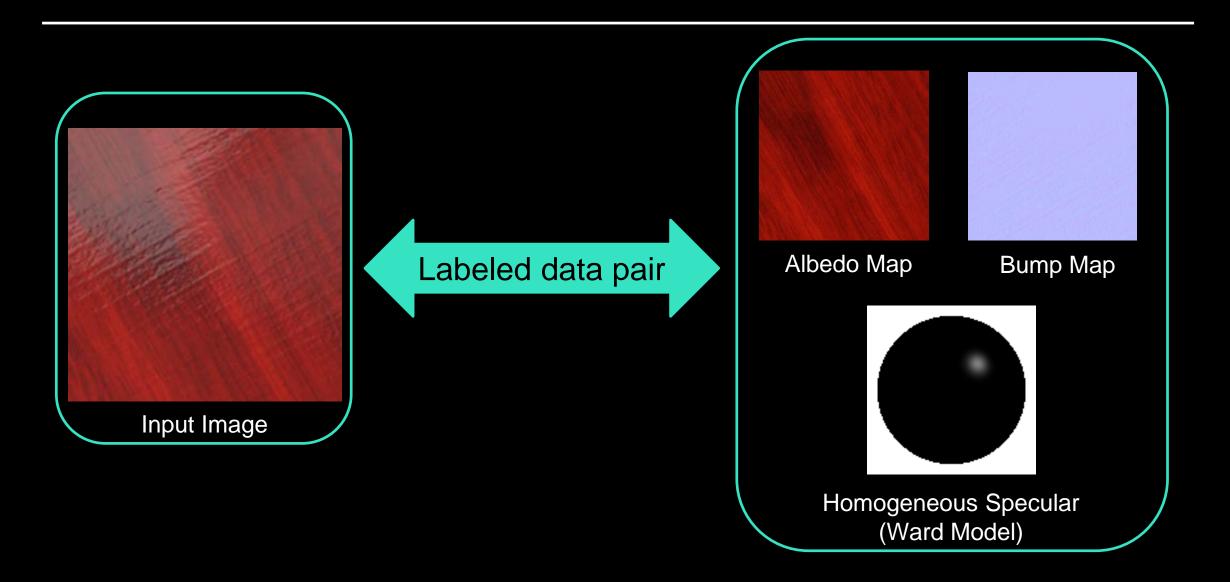


Modeling Appearance by CNN

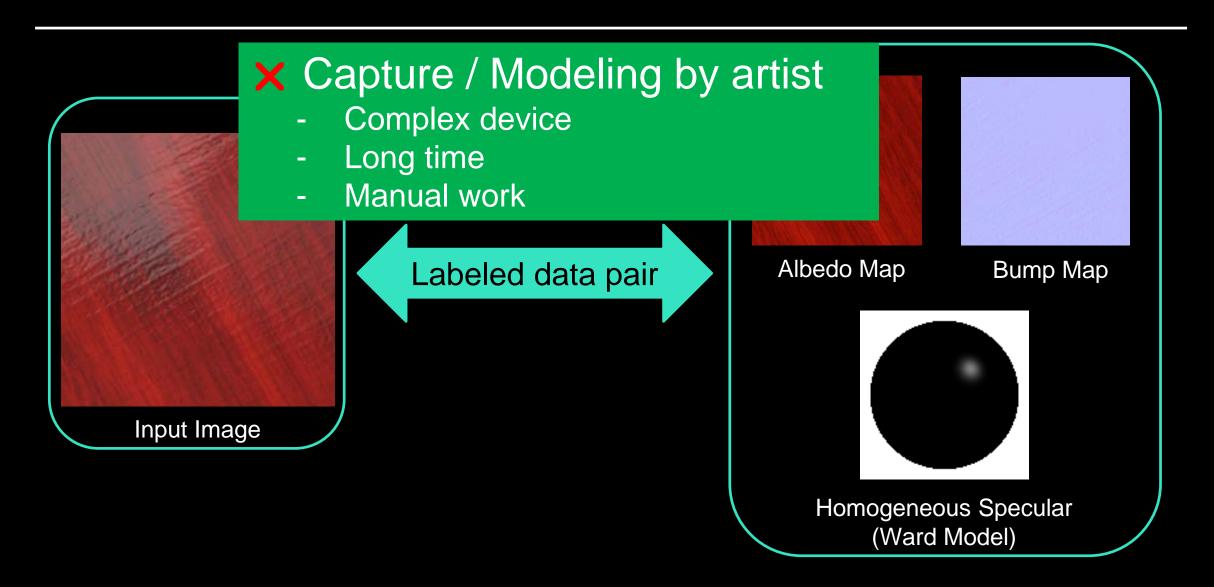


Homogeneous Specular (Ward Model)

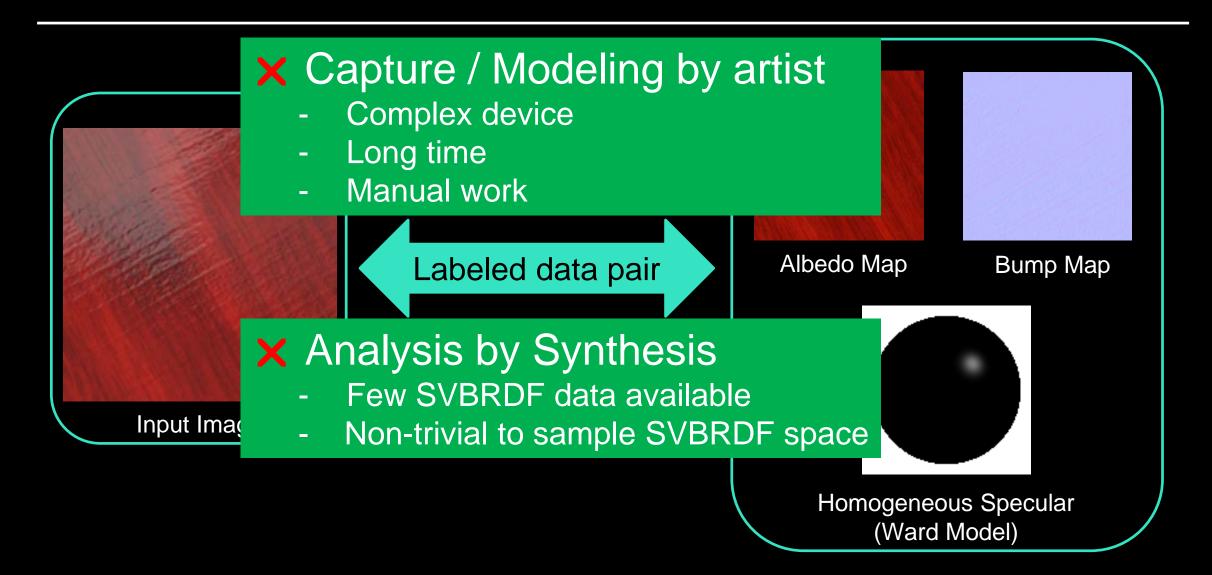
Obtaining Labeled Data is HARD!



Obtaining Labeled Data is HARD!

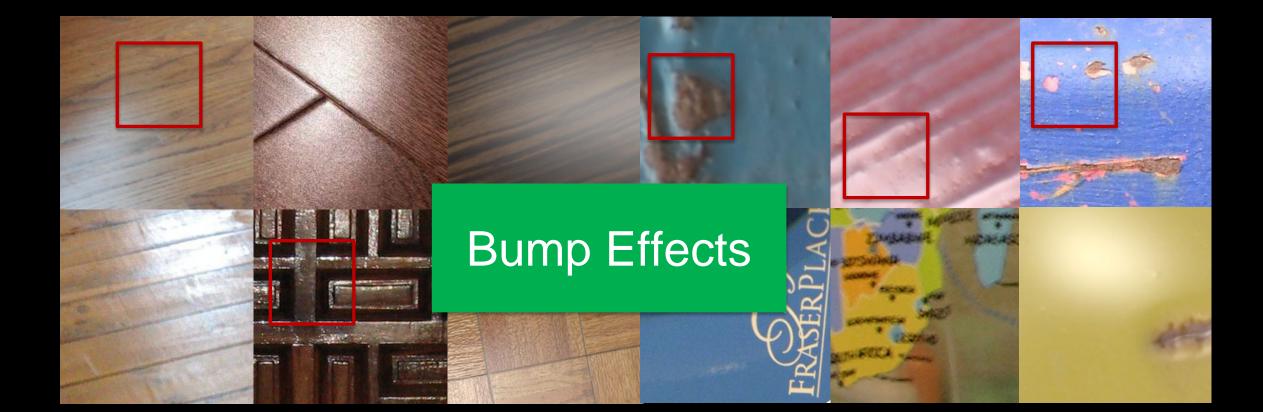


Obtaining Labeled Data is HARD!



Unlabeled Image Contains Information

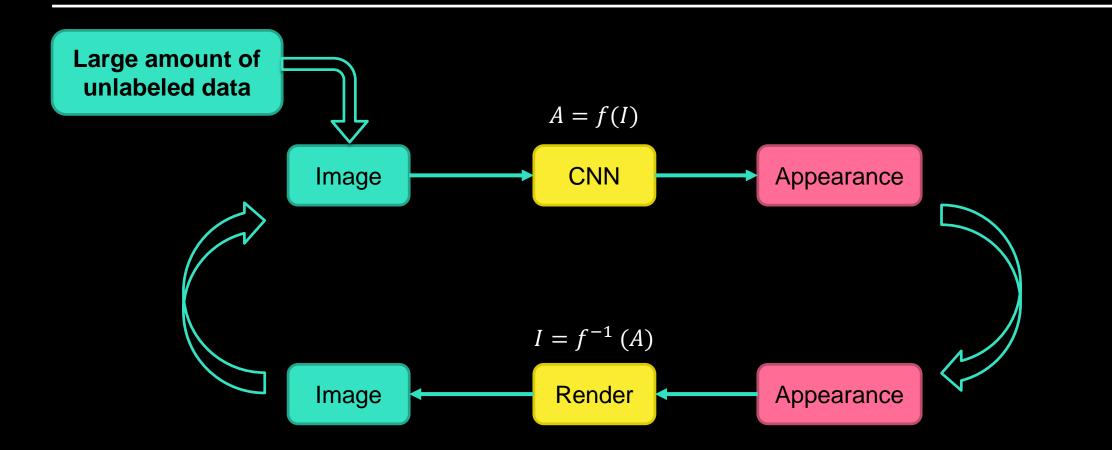
Unlabeled Image Contains Information



Key Observation

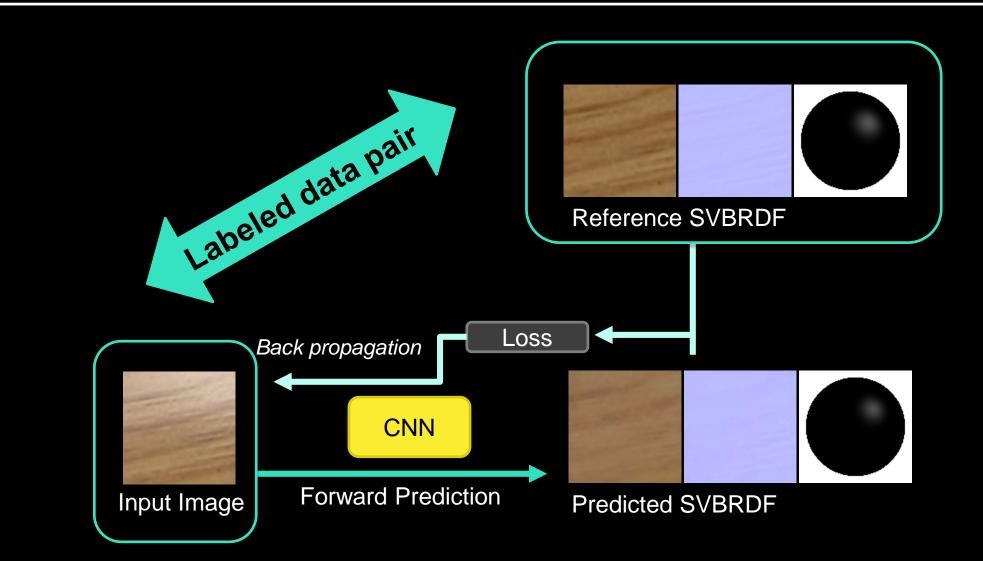
Forward Mapping: Appearance Modeling $\mathbf{A} = f(\mathbf{I})$ Image CNN Appearance Inverse Mapping: Render $I = f^{-1} (A)$ Image Render Appearance

Key Observation



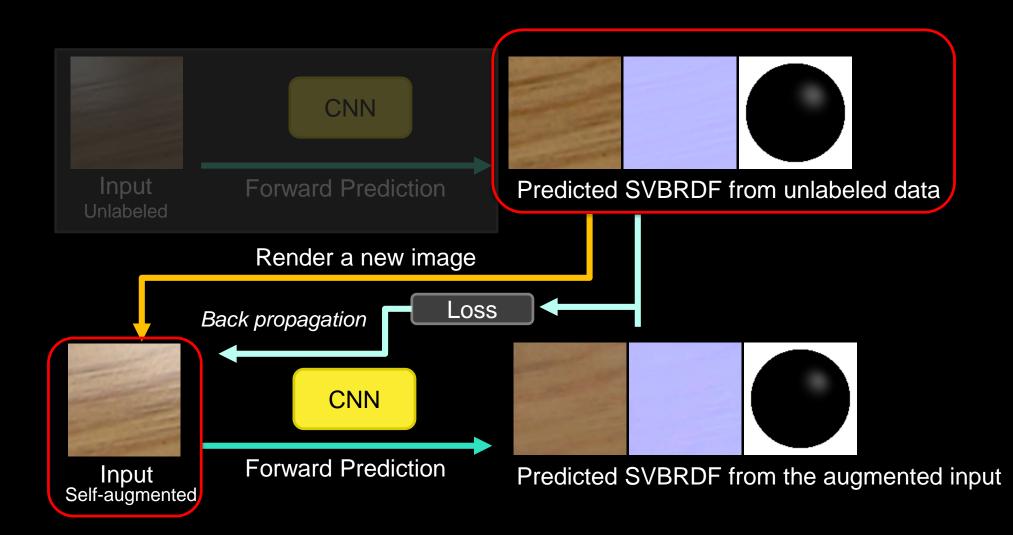
Ē

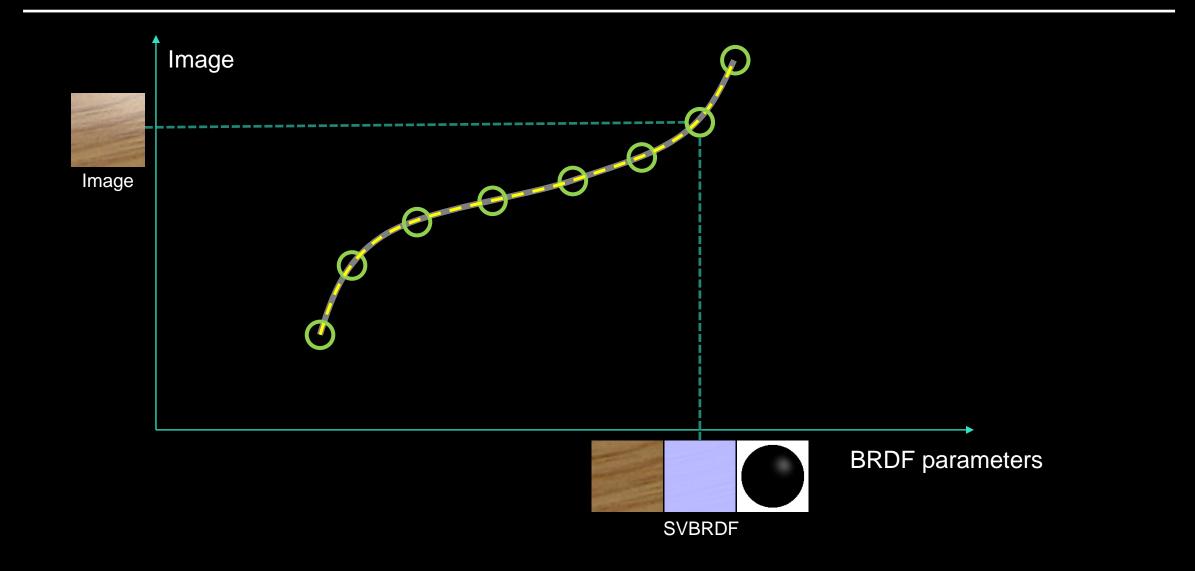
Self-Augmented Training

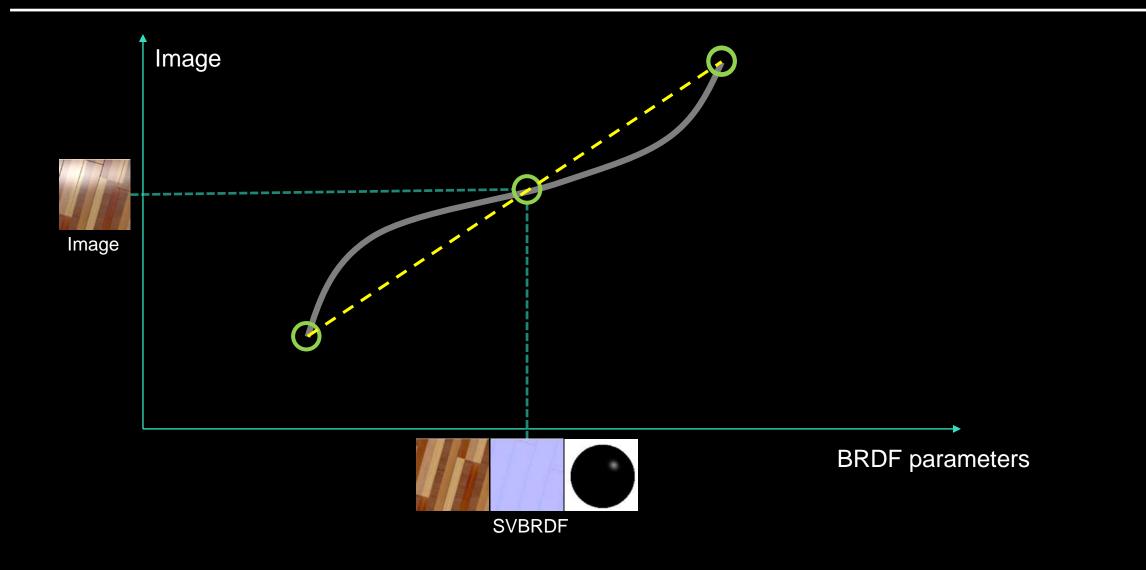


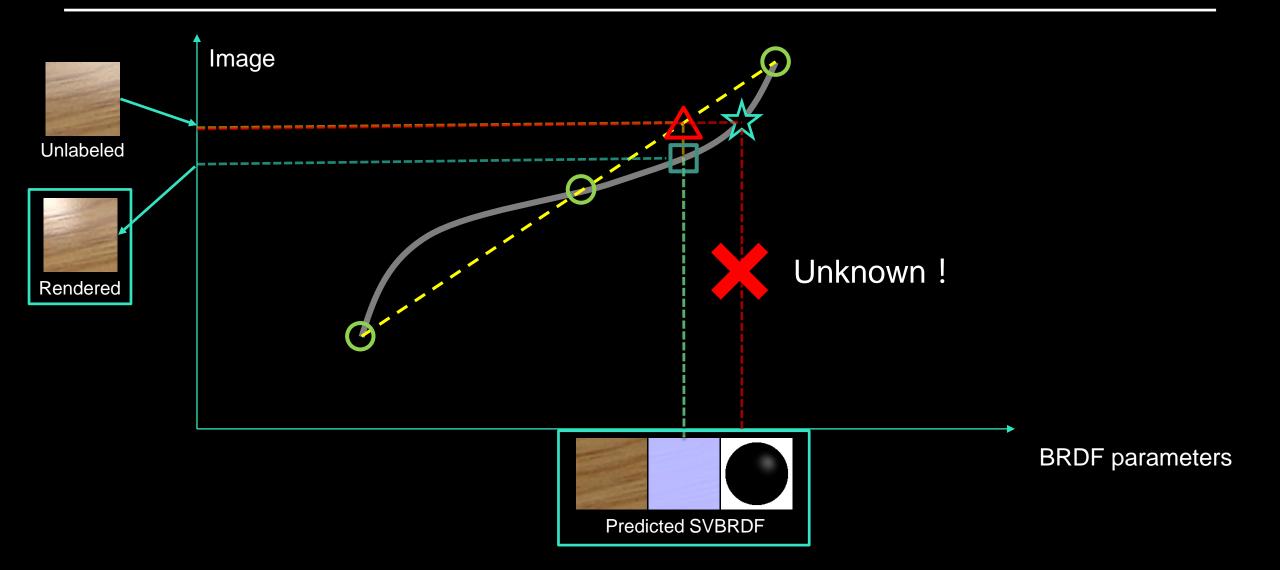
Ţ

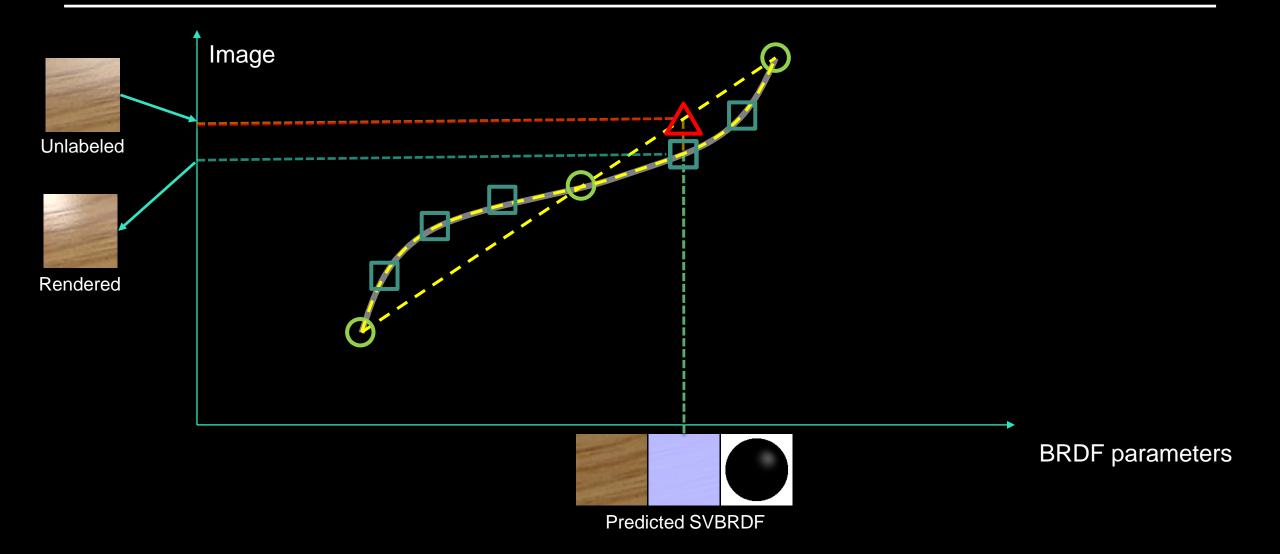
Self-Augmented Training





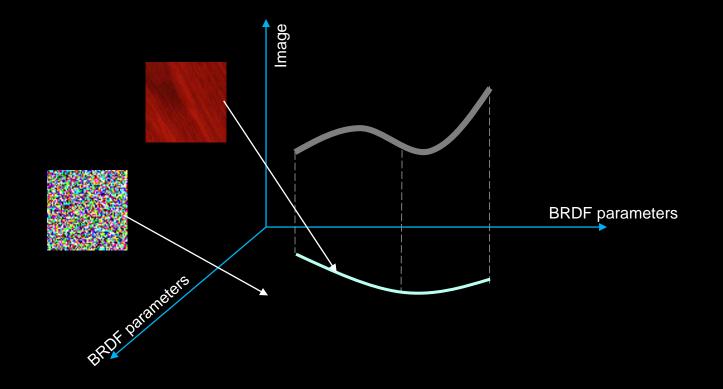






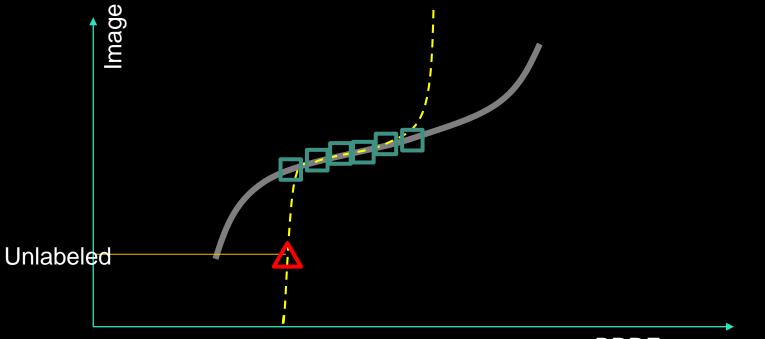
Why SA scheme works

- Exploring the meaningful domain
- Defined in high dimensional space

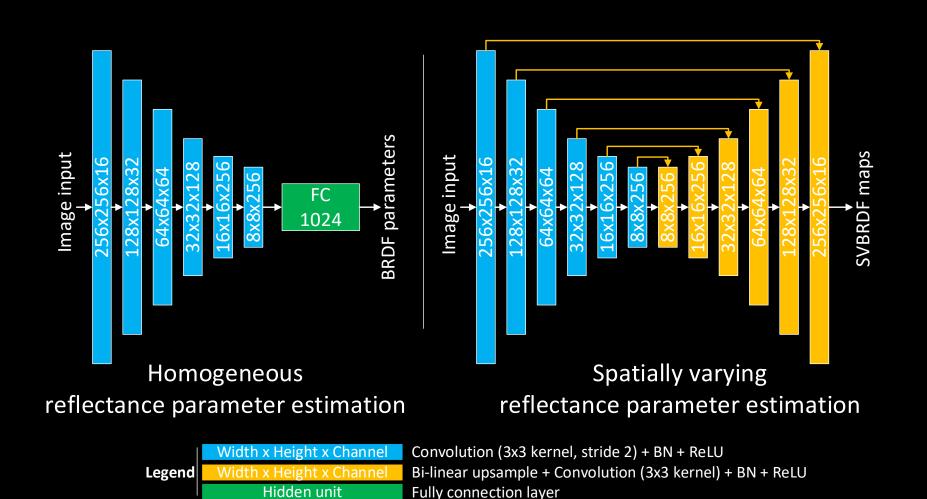


The pitfall

- Local minimal / model collapsing
 - Interleave labeled & SA training minibatches



Network Structure Fully Convolutional, U-Net

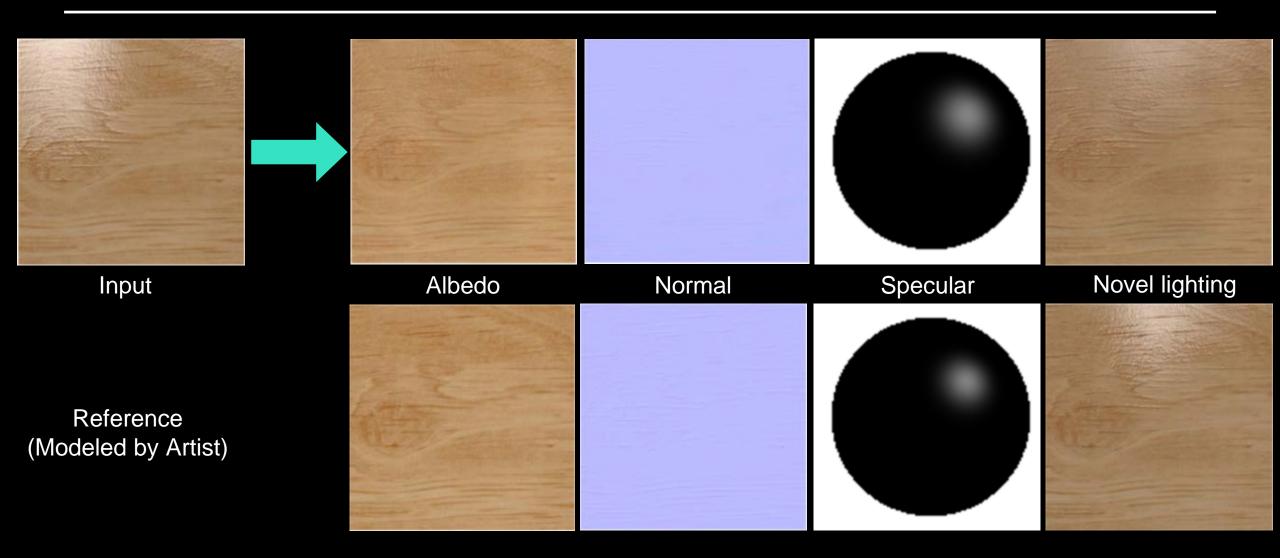


Training Details

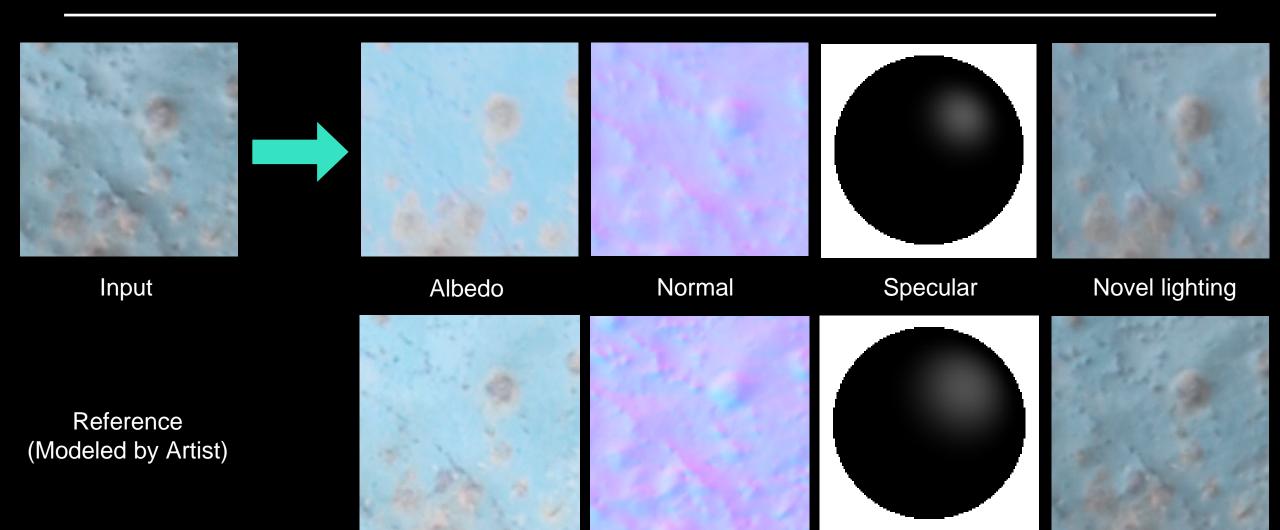
- Training data
 - Wood / Metal / Plastic
 - 60 labeled SVBRDFs
 - 1000+ unlabeled photos
 - 256*256 patch
- Performance (Titan X)
 - Training: ~40 hours
 - Inference: ~0.3 sec.

Data and Source Code: http://msraig.info/~sanet/sanet.htm

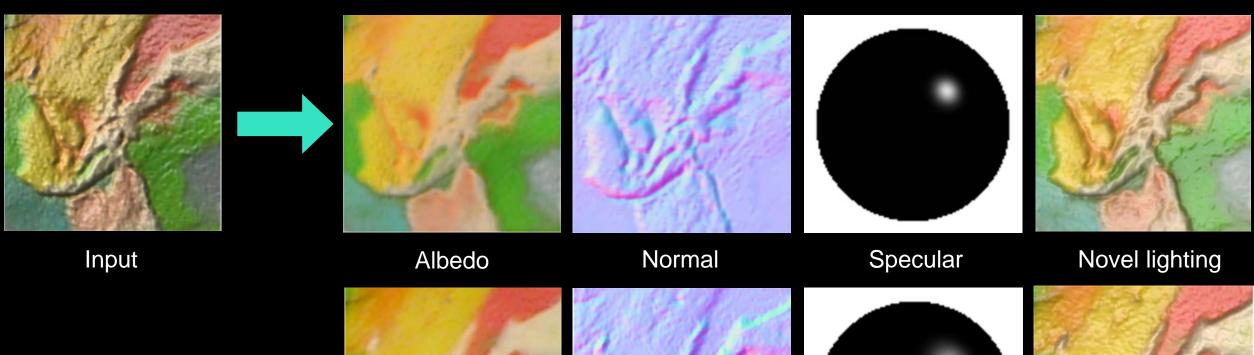
Results - WOOD



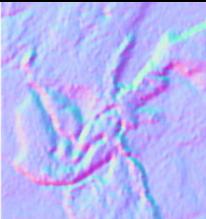
Results - METAL

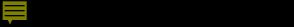


Results - PLASTIC

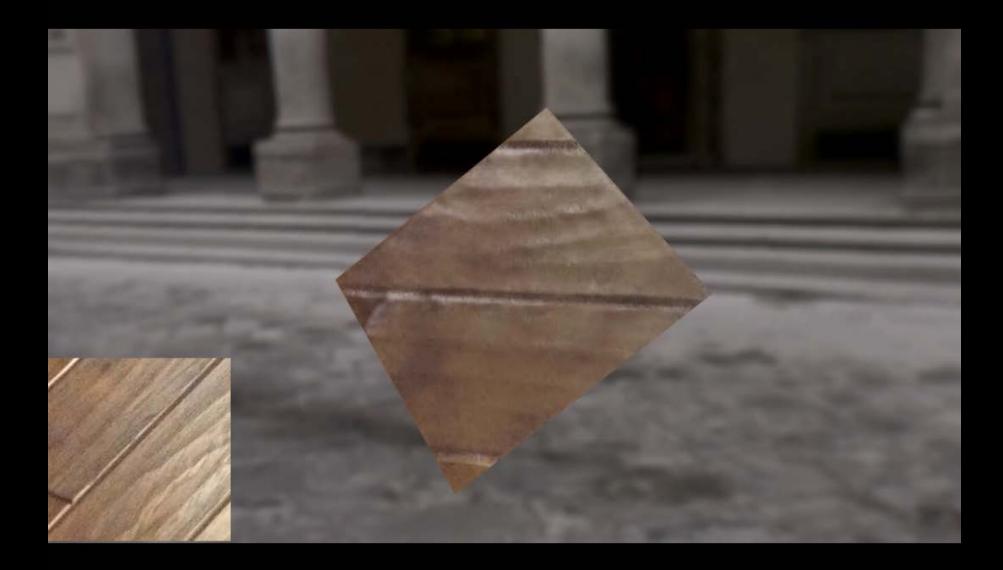


Reference (Modeled by Artist)

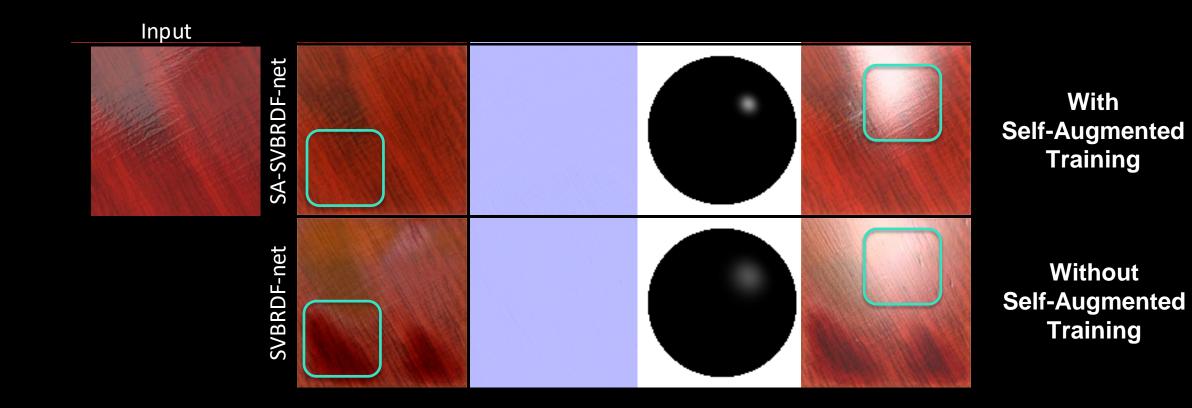




Relighting Video

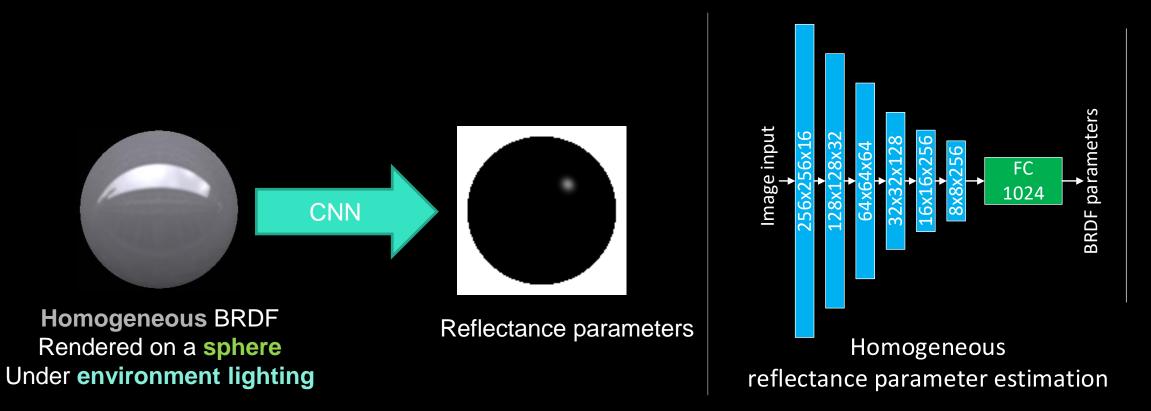


Benefit of Self-Augmentation



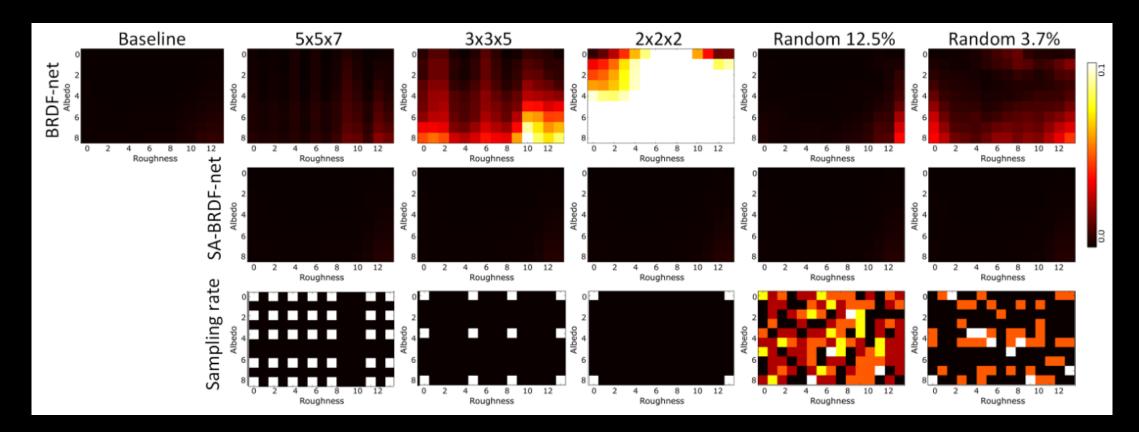
BRDF-Net

• Manageable scale problem for better understanding



BRDF-Net

- Effects of self-augmentation
- Full labeled data vs Sparse labeled + unlabeled (rest)



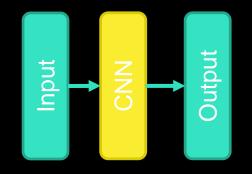
BRDF-Net

• Effects of unlabeled data

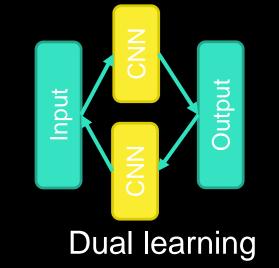
Percent.	No Self-	Percentage Unlabeled								
Labeled	augmentation	5	10	20	30	50	70	80	90	95
5	0.002549	0.001395	0.001141	0.000884	0.000689	0.000704	0.000651	0.000578	0.000592	0.000628
10	0.001252	0.001382	0.001027	0.000720	0.000760	0.000671	0.000584	0.000634	0.000592	
20	0.000746	0.001155	0.000845	0.000751	0.000621	0.000619	0.000641	0.000513		
30	0.000662	0.000714	0.000648	0.000694	0.000492	0.000548	0.000535			
50	0.000562	0.000660	0.000559	0.000552	0.000506	0.000470				
70	0.000619	0.000601	0.000462	0.000550	0.000499					
80	0.000553	0.000542	0.000421	0.000413						
90	0.000546	0.000505	0.000471							
95	0.000550	0.000471								
100	0.000499									

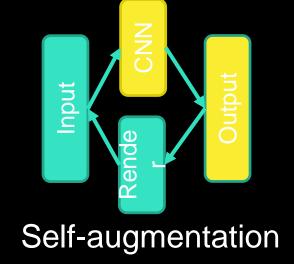
Self-augmentation vs dual learning

- Parallel scheme
 - With different known components

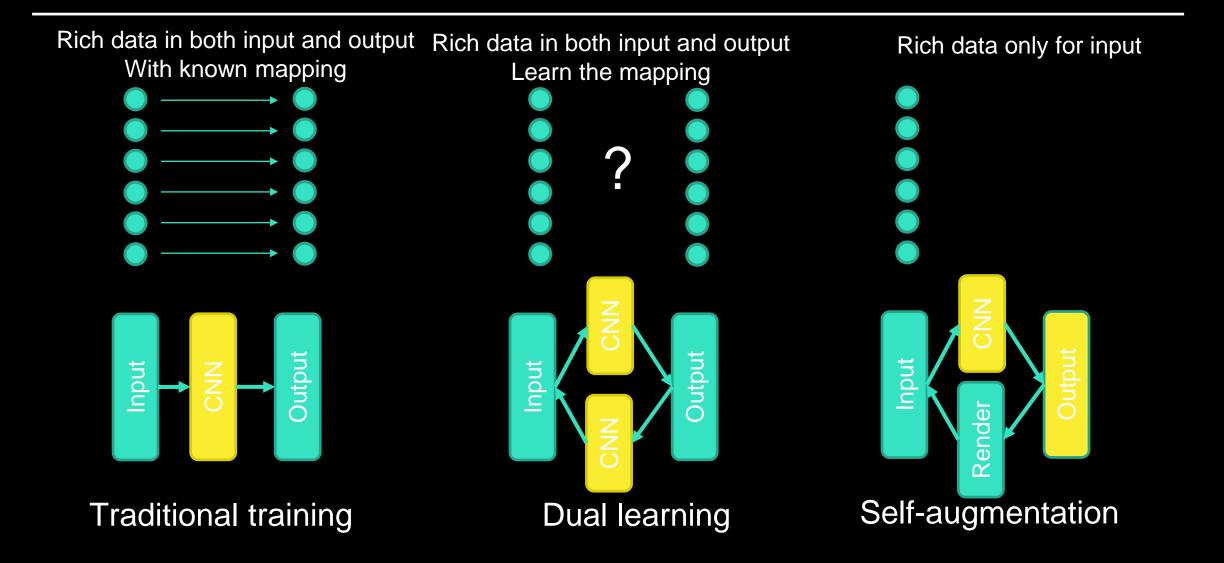


Traditional training



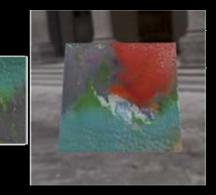


Self-augmentation vs dual learning

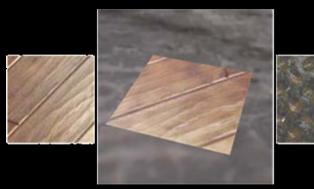


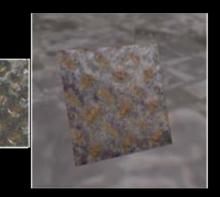
Conclusion

- Self-augmented training
 - Single image => Plausible appearance
 - Labeled + Unlabeled training



- Future Work
 - More complex surface appearance
 - Self-augmentation for other tasks





Acknowledgements

- Anonymous Reviewers
- Beijing Film Academy
- NSF grant: IIS-1350323

THANKS!

BACKUP SLIDES

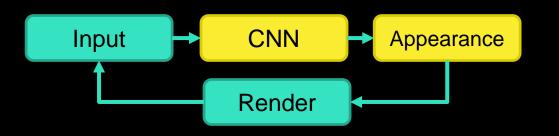
Self-augmentation vs dual learning

Self-augmentation

- Unlabeled Input
- Known Inverse Mapping

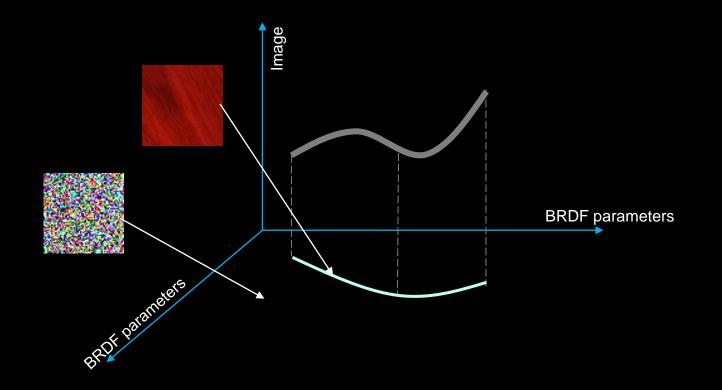
Dual learning

- Unlabeled on two tasks
- Trained dual tasks



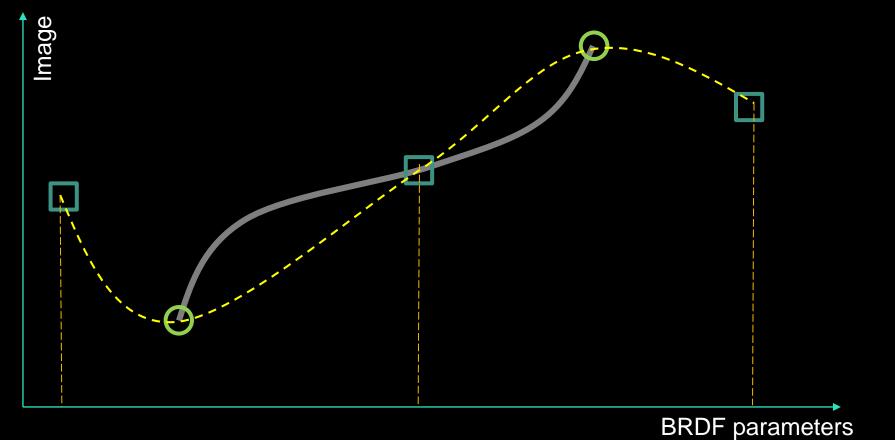
Discussion

• Exploring the meaningful domain defined in high dimensional space

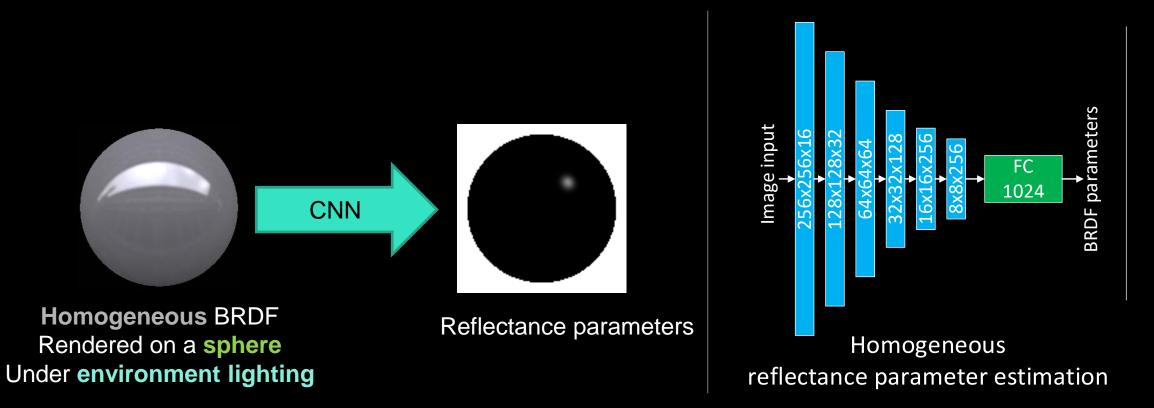


SOLUTION: Self-Augment Training

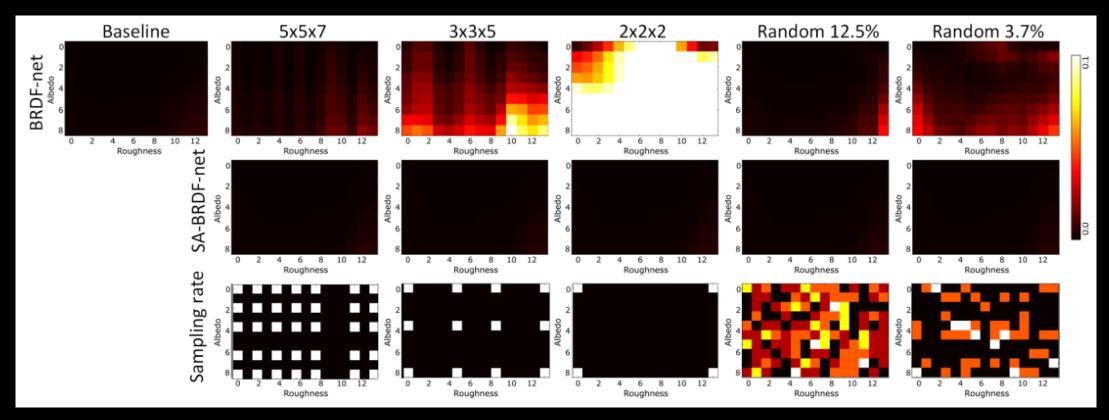
• An 1D illustration



Manageable scale problem for better understanding



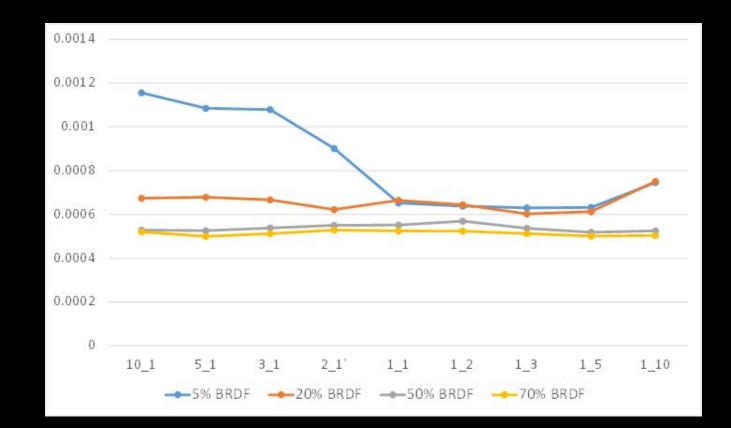
- Effects of self-augmentation
 - Full labeled data v.s. sparse labeled + rest data unlabeled



• Effects of different amount of unlabeled data

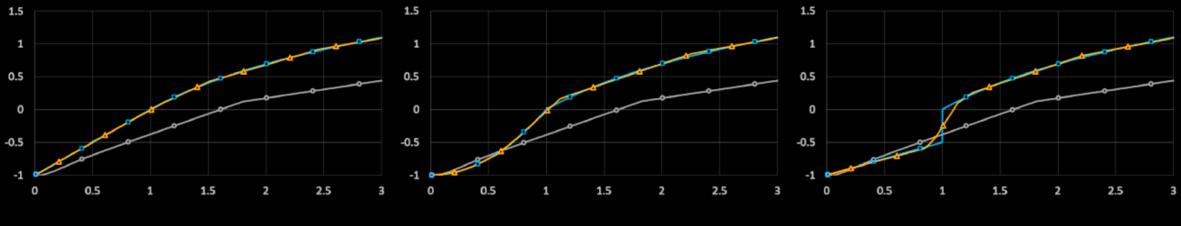
Percent.	No Self-	Percentage Unlabeled								
Labeled	augmentation	5	10	20	30	50	70	80	90	95
5	0.002549	0.001395	0.001141	0.000884	0.000689	0.000704	0.000651	0.000578	0.000592	0.000628
10	0.001252	0.001382	0.001027	0.000720	0.000760	0.000671	0.000584	0.000634	0.000592	
20	0.000746	0.001155	0.000845	0.000751	0.000621	0.000619	0.000641	0.000513		
30	0.000662	0.000714	0.000648	0.000694	0.000492	0.000548	0.000535			
50	0.000562	0.000660	0.000559	0.000552	0.000506	0.000470				
70	0.000619	0.000601	0.000462	0.000550	0.000499					
80	0.000553	0.000542	0.000421	0.000413						
90	0.000546	0.000505	0.000471							
95	0.000550	0.000471								
100	0.000499									

• Interleave training ratio between unlabeled / labeled data



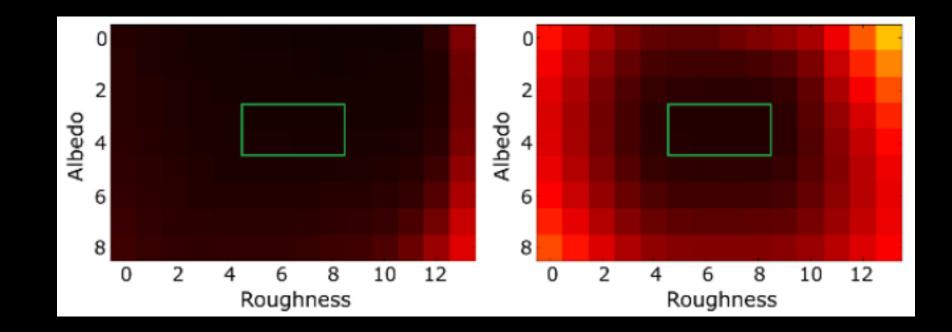
SOLUTION: Self-Augment Training

- An 1D training illustration
 - Regression with 2 layer MLP
 - Only 2 labeled data at the ends / unlabeled data for full range



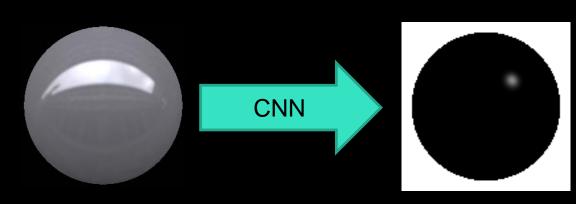
Ground Truth • Corner Data • Corner Data + SA

• Vaildation on convex hull assumption



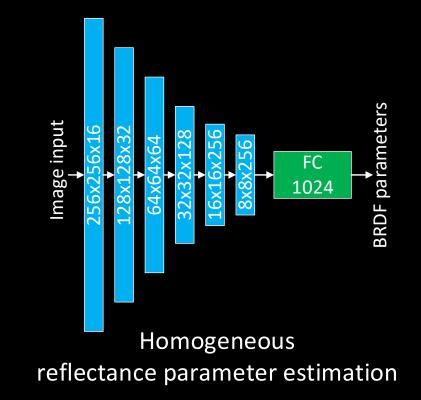
In-Depth Validation of SA scheme

- Convex Hull
 - labeled data should cover whole space
- Interleave ratio
 - 1:1



Homogeneous BRDF Rendered on a sphere Under environment lighting

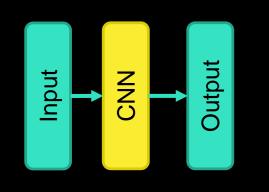
Reflectance parameters



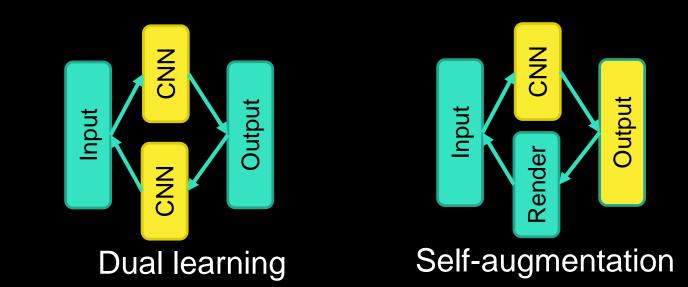
Self-augmentation vs dual learning

- Unlabeled Input
- Known Inverse Mapping

- Unlabeled on two tasks
- Trained dual tasks



Traditional training



Self-augmentation vs dual learning



Discussion

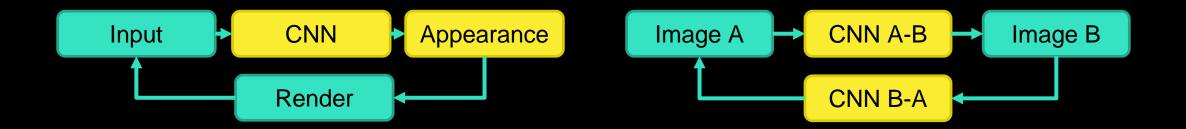
Discussion

Self-augmented training

- Unlabeled input
- Known inverse mapping

Dual learning

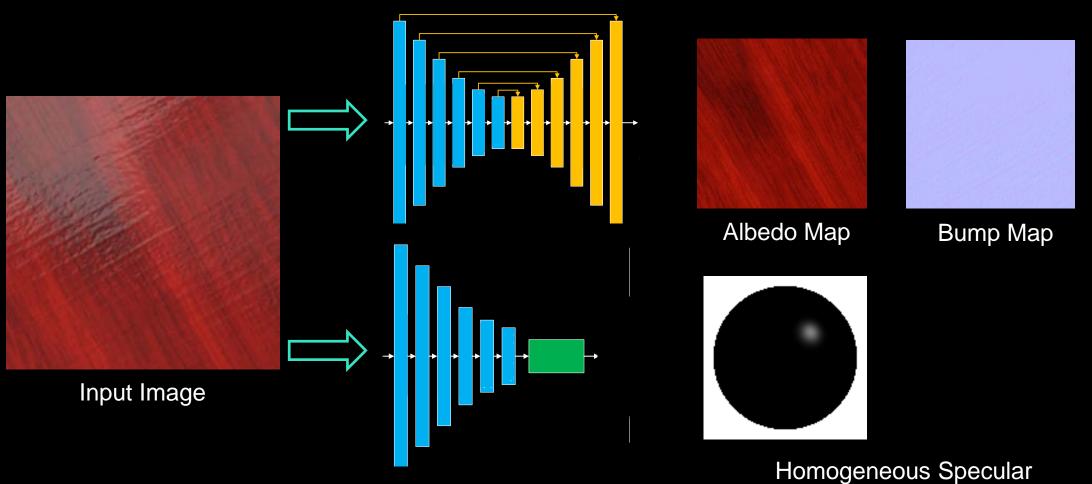
- Unlabeled on two sets
- Trained dual tasks



Motivation – Appearance Modeling

Tracer - by Pyroshii on DeviantArt / TommyGTeguh.com

Modeling Appearance by CNN



(Ward Model)

Ţ

BENEFIT of Self-Augmentation

