Design and Volume Optimization of Space Structures

Caigui Jiang^{1,2} Chengcheng Tang^{1,3} Hans-Peter Seidel² Peter Wonka¹

Outline

- Introduction
- Related work
- Overview
- Optimization framework
- Results
- Conclusion and future work

Outline

- Introduction
- Related work
- Overview
- Optimization framework
- Results
- Conclusion and future work

Space structures

• A space frame or space structure is a truss-like, lightweight rigid structure constructed from interlocking struts in a geometric pattern. (From Wikipedia)

nodes

struts (or bars)

The Heydar Aliyev Cultural Center Designed by Zaha Hadid

Engineering goals in space structure design

- statically sound
- aesthetically pleasing
- approximating reference surfaces
- with minimized construction cost
 - minimizing the total volume of material used for beams
 - limited types of cross section areas

Outline

- Introduction
- Related work
- Overview
- Optimization framework
- Results
- Conclusion and future work

Structural design for the virtual worlds

Smith, J., Hodgins, J., Oppenheim, I. and Witkin, A., 2002. Creating models of truss structures with optimization. *ACM Trans. Graph*.

Static-aware design

Umetani, N., Igarashi, T. and Mitra, N.J., 2012. Guided exploration of physically valid shapes for furniture design. *ACM Trans. Graph.* Martínez, J., Dumas, J., Lefebvre, S. and Wei, L.Y., 2015. Structure and appearance optimization for controllable shape design. *ACM Trans. Graph.*

Static-aware 3D printing

Zhou, Q., Panetta, J. and Zorin, D., 2013. Worst-case structural analysis. ACM Trans. Graph.

Static-aware 3D printing

Wang, W., Wang, T.Y., Yang, Z., Liu, L., Tong, X., Tong, W., Deng, J., Chen, F. and Liu, X., 2013. Cost-effective printing of 3D objects with skin-frame structures. *ACM Trans. Graph.*

Related work: optimal trusses

Michell, A.G.M., 1904. LVIII. **The limits of economy of material in frame-structures**. *The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science*, *8*(47).

Related work: the ground structure method

Martinez, P., Marti, P. and Querin, O.M., 2007. Growth method for size, topology, and geometry optimization of truss structures. *Structural and Multidisciplinary Optimization*, 33(1).

Outline

- Introduction
- Related work
- Overview
- Optimization framework
- Results
- Conclusion and future work

Framework overview

Input reference surface

Initial structure

Joint optimization of node positions and connectivity

Discrete optimization of beam cross sections

2D illustration: initial structure

An initial over-complete 2D bridge configuration with uniform loads

2D illustration: joint optimization of connectivity and node positions

bridge design after joint optimization of node positions and connectivity

2D illustration: discrete optimization

Outline

- Introduction
- Related work
- Overview
- Optimization framework
- Results
- Conclusion and future work

• Coarse-mesh generation

• Double-layer structures

Derivation of double-layer space structures based on offsetting a quad mesh with (a) and without (b) dualization and a triangle mesh with (c) or without (d) dualization.

Adding additional beams

• Adding additional beams: possible solutions after beams are removed

Joint optimization: overview

Joint optimization: overview

- A nonlinear continuous optimization
- Variables:
 - node positions
 - internal forces
- Assumptions
 - axial forces only
 - force limits in proportion to cross-section areas

Joint optimization: force initialization

• Internal force initialization

 w_{ij} the axial forces per unit length defined on each beam

Joint optimization: energy terms

 $E_{static} = \sum_{i \in V} \left(\sum_{i: \{i, j\} \in E} w_{ij} (\mathbf{v}_j - \mathbf{v}_i) + \mathbf{l}_i \right)^2.$ • Static equilibrium $E_{close} = \sum \left((\mathbf{v}_i - \mathbf{v}_i^*) \cdot \mathbf{n}_i^* \right)^2.$ Closeness $v_i \in V$ $E_{volume} = \sum |w_{ij}| \cdot ||\mathbf{v}_j - \mathbf{v}_i||^2.$ Total volume $i, i; \{i, i\} \in E$ $E_{comb.} = \sum |w_i \cdot w_j|.$ • Combinatorial validity $i, j: \{i, j\} \in Ex$

Joint optimization: energy terms

$$E_{sum} = \bigwedge_{static} E_{static} + \bigwedge_{close} E_{close} + \bigwedge_{volume} E_{volume} + \bigwedge_{comb} E_{comb} + \bigwedge_{reg} E_{reg}$$

higher weight lower weight

Discrete optimization: problem formulation

• Mixed integer programming formulation

$$\begin{array}{ll} \underset{x_{ij},\overline{a}_{j},s_{i}}{\text{minimize}} & \sum_{i} l_{i} \sum_{j=1}^{k} \overline{a}_{j} x_{ij} \\ \text{subject to} & \overline{B^{T} \mathbf{s} = -\mathbf{f}} \quad \text{Force equilibrium} \\ & \sum_{j=1}^{k} x_{ij} \overline{a}_{j} + s_{i} \geq 0; \quad i = 1, \dots, |E| \\ & \sum_{j=1}^{k} x_{ij} \overline{a}_{j} - s_{i} \geq 0; \quad i = 1, \dots, |E| \\ & \sum_{j=1}^{k} x_{ij} \leq 1; \quad i = 1, \dots, |E| \\ & x_{ij} \in \{0, 1\}; \quad j = 1, \dots, k, \quad i = 1, \dots, |E| \\ \end{array}$$

• Sp-1: Fix \overline{a}_j , and solve for s_j and x_{ij} .

• Sp-2: Fix s_j , and solve for \overline{a}_j and x_{ij} .

• Sp-3: Fix x_{ij} , and solve for s_j and \overline{a}_j .

$$\overline{a}_{j}, \quad j = 1, \dots, k$$

k types of customized
cross-section areas
$$s_{i}, \quad i = 1, \dots, |E|$$

axial forces of beams
$$x_{ij}, \quad j = 1, \dots, k$$

assignment of types for beam

• Sp-2: Fix s_j , and solve for \overline{a}_j and x_{ij} .

X: accumulation of edge lengths

Y: absolute values of axial forces

• Sp-2: Fix s_j , and solve for \overline{a}_j and x_{ij} .

• Sp-3: Fix x_{ij} , and solve for s_j and \overline{a}_j .

Discrete optimization: overall algorithm

- First, as a preprocessing step, we determine the bounds of a_{max} , which could be used as input for Sp-1 (fix a_j)
- Next, as the main procedure, the algorithm alternates between Sp-1 (fix a_i) and Sp-2 (fix s_i) to find the optimal beam type assignment, x_{ij}.

• Finally, as a post-processing step, we use Sp-3 (fix x_{ij}) to further adjust the cross-section areas of each type, a_j.

Outline

- Introduction
- Related work
- Overview
- Optimization framework
- Results
- Conclusion and future work

Results

2 customized cross-sections 6 customized cross-sections

Results: tension and compression

Color coding: tension (red) and compression (blue)

Results: comparisons

Ground structure method

Our method

Results: comparisons

Structure	Stress	[Rasmussen and Stolpe 2008]			Ours rounding-up			Ours		
	limit	$Vol(m^3)$	Т	$CS(10^{-3}m^2)$	$Vol(m^3)$	Т	$CS(10^{-3}m^2)$	$Vol(m^3)$	Т	$CS(10^{-3}m^2)$
a XXXX	170Mpa	0.0466	hours	10/5	0.0466	0.4s	10/5	0.0322	0.5s	5.30/2.65
	120MPa	0.0608	hours	10/5	0.0608	0.4s	10/5	0.0456	0.5	7.5/3.75
	90MPa	0.0608	hours	10/5	0.0608	0.4s	10/5	0.0608	0.5	10/5
b	170MPa	0.438	hours	10/7.5/5/2.5	0.455	0.5s	10/7.5/5/2.5	0.294	0.6s	4.71/2.04/1.66/0.59
	120MPa	0.524	hours	10/7.5/5/2.5	0.524	0.5s	10/7.5/5/2.5	0.417	0.6s	6.67/2.89/2.34/0.83
	90MPa	0.656	hours	10/7.5/5/2.5	0.698	0.5s	10/7.5/5/2.5	0.555	0.6s	8.89/3.85/3.14/1.11

Outline

- Introduction
- Related work
- Overview
- Optimization framework
- Results
- Conclusion and future work

Limitations and future work

Limitations

- Global convergence
- Global buckling

Future work

- Design of other types of statically sound structures, e.g., bikes
- Field generation for optimal structures
- Structural optimization for dynamic structures

Thank you!

initial structure

optimized connectivity (the ground structure method)

optimized connectivity (our method)

Roller coaster

Roller coaster

optimized connectivity (our method)

Roller coaster

Electrical transmission tower

Blob

optimized structure

initial structure