Complex Fluids and Soft Materials: A Numerical Perspective 复杂流体和柔性材料的计算方法

Bo Zhu 朱博

MIT CSAIL boolzhu@csail.mit.edu

Complex Physical Systems

Geometry, Topology, Dynamics Material, Structure, Codimension, Transition

> Computer Graphics, Computational Fluid Dynamics, Computational Fabrication, 3D Printing, Biomedical Engineering, Robotics

[Fabian Oefner]

Two liquid jets collide with each other

[Bremond N and Villermaux E 2006]

```
Impinging Jets
```

[John Bush Lab, MIT, 2004]

http://www.phikwadraat.nl/

[John Bush Lab, MIT, 2004]

Water Bell

Non-Newtonian Flow

Viscosity matters!

Math behind a pizza piece

Functional Soft Bodies

What are they?

What are inside these flames?

. . .

0

0

Why do they happen? Why are splash crown-shaped?

. . .

How to make a glider fly?

• • •

Large-scale Simulation for Film Visual Effects

Bo Zhu, Wenlong Lu, Matthew Cong, Byungmoon Kim, and Ron Fedkiw. A New Grid Structure for Domain Extension. ACM Trans. Graph. (SIGGRAPH 2013), 32, 63.1-63.8.

Domain Extension

1x

Sim time on a furificated grid:

12x 3.1x

160x 6.1x

New Grid Structure

X-Axis: Layer 1: 4 Layer 2: (2, 3) Layer 3: (1, 1)

Y-Axis: Layer 1: 6 Layer 2: (1, 4) Layer 3: (0, 2)

Two Grid Boxes

- The interior box with the finest resolution to resolve fine details
- The exterior box with gradually coarsened resolutions to enclose the entire fluid

Solving Incompressible Flow on Stretched Grid Cells

• Use the volume weighted divergence to solve the Poisson equation for pressure on stretched cells in order to obtain a SPD system

Computational Tools for Exploring Fundamental Sciences

Bo Zhu, Ed Quigley, Matthew Cong, Justin Solomon, and Ron Fedkiw. Codimensional Surface Tension Flow on Simplicial Complexes. ACM Trans. Graph. (SIGGRAPH 2014).

Bo Zhu, Minjae Lee, Ed Quigley, and Ron Fedkiw. *Codimensional Non-Newtonian Fluids. ACM Trans. Graph. (SIGGRAPH 2015).*

Wen Zheng, Bo Zhu, Byungmoon Kim, and Ron Fedkiw. A New Incompressibility Discretization for a Hybrid Particle MAC Grid Representation with Surface Tension. J. Comp. Phys., 280, 94-142, 2015.

Anisotropic Thin Features

Embed a Lagrangian mesh in a grid

What will happen if the features get even thinner? Vanishingly thin?

These phenomena are not rare...

Membrane: Oefner's photography fabianoefner.com

Jets and sheets:

Bush's experiments, MIT Applied Math Lab

Simplicial Complex

A geometric structure that consists of points, segments, triangles, and tetrahedra

Reduced Geometry

Codimensional Volume-Weighted Gradient

• For all the simplexes incident to a particle:

Discretized Poisson Equation

• Poisson equation: $\nabla \cdot \frac{1}{\rho} \nabla p = \frac{1}{\Delta t} \nabla \cdot \vec{u}^{**}$

• Volume weighted formula:

Surface Tension

• Discretization:

$$\vec{f}_{t,n} = \sigma \vec{l}_{t,n}/2 \qquad \qquad \vec{f}_{r,n} = c \hat{\lambda} \sigma \vec{d}_{r,n} \qquad \qquad \vec{f}_{e,n} = \pi \lambda_n \sigma \vec{d}_{e,n}$$
$$\vec{f}_n = \sum_{t \in F_n} \vec{f}_{t,n} \qquad \qquad \vec{f}_n = \sum_{f \in F_n} \vec{f}_{f,n} + \sum_{r \in R_n} \vec{f}_{r,n} \qquad \qquad \vec{f}_n = \sum_{e \in E_n} \vec{f}_{e,n}$$

Meshing Algorithm

For each timestep

//Volumetric meshing
Tetrahedron edge/face flip
Tetrahedron edge split
Skinny tetrahedron collapse
Tetrahedron edge/face flip

//Thin film meshing
Triangle edge split
Triangle edge collapse
Triangle edge flip
Triangle crumple merge

/ Filament meshingSegment edge splitSegment edge collapse

//Topological merging/breaking
Boundary vertex snap
Thin triangle break
Thin segment break

Example: Blowing Bubbles

http://www.soapbubble.dk/

Example: Film Catenoid

Example: Waterbell

http://www.phikwadraat.nl/

Numerical Simulation of Non-Newtonian Fluids

Bo Zhu, Minjae Lee, Ed Quigley, and Ron Fedkiw. Codimensional Non-Newtonian Fluids. ACM Trans. Graph. (SIGGRAPH 2015).

Different Material Models

Variable Viscosity

- Non-Newtonian flow: $\mu = \mu(\dot{\gamma})$
- Semi-Implicit viscosity force:

• Volume weighted formula for the implicit part:

$$(\boldsymbol{W} + \frac{\Delta t}{\rho} \boldsymbol{G}^T \boldsymbol{\hat{W}}^{-1} \boldsymbol{G}) \vec{u}^{**} = \boldsymbol{W} \vec{u}^*$$

An interactive system for cardiovascular surgeons

Reduced Geometry

• Hydraulics

$$Q_n = -MQ_e$$
$$MD_e M^T P_n = Q_n$$

• Hydrodynamics

Adaptive/Reduced Discretizations

Real-time Simulators

Geometric Data Structures

User Interface

Numerical PDE Solvers

Meshing

- Fabrication

Large-Scale Optimization

Motivation: Direct Design v.s. Generative Design

Generative Design

Direct Design

Topology Optimization

Hardware: Object-1000 Plus

- Up to 39.3 x 31.4 x 19.6 in.
- 600dpi (~40 microns)
- 5 trillion voxels

Software: SIMP Topology Optimization

- Up to millions of elements
- Difficult to handle multiple materials

Previous Work: Fabrication-Oriented Optimization

[Lu et.al. 2014]

[Matinez et.al. 2016]

[Xu et.al. 2015]

[Panetta et.al. 2015]

[Musialski et.al. 2016]

[Schumacher et.al. 2015]

Topology Optimization

[Langlois et.al. 2016]

[Matinez et.al. 2015]

[Wu et.al. 2016]

Microstructure

Continuous Representation: Levelset

Expanding the Achievable Property Domain

Stochastically-Ordered Sequential Monte Carlo

Expanding the Achievable Property Domain

Continuous Microstructure Optimization

Topology Optimization

Minimum Compliance/Target Deformation

Linear Elastic FEM: $\longrightarrow F(\mathbf{p}, \mathbf{u}) = K(\mathbf{p})\mathbf{u} - \mathbf{f} = 0$ (Adjoint Method)

Minimum Compliance $S_c(\mathbf{p}, \mathbf{u}) = \mathbf{u}^T \mathbf{K} \mathbf{u}$

Topology optimization iterations: material distribution in 4D space

Density

Young's modulus

Density ->

Density, Young's modulus, Poisson's Ratio, ...

Poisson ratio Shear modulus

(0,1] ->

Levelset boundary

Target Deformation

$$S_d(\boldsymbol{p}, \boldsymbol{u}) = (\boldsymbol{u} - \widehat{\boldsymbol{u}})^T \boldsymbol{D} (\boldsymbol{u} - \widehat{\boldsymbol{u}})$$

Optimizing for target deformation on boundary cells

Microstructure Mapping

Map points in continuous space to discrete microstructures

Example: Soft Gripper

Optimization

Fabrication

Example: Different Gripping Mechanisms

for the same target deformation

Example : Flexure

Topology Optimization Iterations

Example: Soft Ray

Thank you!