Multiscale Methods for Design and Fabrication of Deformable Objects

多尺度方法在设计制造可形变物体 方面的应用

Desai Chen Computational Fabrication Group MIT CSAIL

> 陈德赛 计算制造组 麻省理工学院计算科学与人工智能实验室

Overview

- FEM for solid simulation
- Data-driven coarsening for static simulation
- Topology optimization with microstructures
- Designing dynamic mechanisms

Finite Element Method (FEM)

Degrees of freedom: \boldsymbol{x} coordinates Elastic energy $V(\boldsymbol{x})$

FEM for Hyperelastic Solids Degrees of freedom: x coordinates Elastic energy V(x)

Stress increases with strain

FEM: Simulating Two Elements $\arg\min\Psi_1(x_1, x_2, x_3, x_4) + \Psi_2(x_3, x_4, x_5, x_6)$ $\boldsymbol{\chi}$ Coupling between two **x**6 energy functions Element **x**5 **x**6 simulate Element 2 xЗ **x**4 Ē Element хЗ **x**4 Element 1 **x**2 **x**1 **x**2 **x**1

Data-Driven Finite Elements for Geometry and Material Design

¹Desai Chen, ¹²David I.W. Levin, ¹²³Shinjiro Sueda, ¹²Wojciech Matusik

Computer Aided Design - CAD

Simulation

Computer Aided Design - CAD

Simulation

Simulating...

Change design

Simulation

Change design

Simulation

Related Work: Fast FEM with Precomputation

Outline

- Introduction
- Coarsening
- Database construction
- Hierarchical coarsening
- Runtime coarsening
- Results

Outline

- Introduction
- Coarsening
- Database construction
- Hierarchical coarsening
- Runtime coarsening
- Results

Method: Material Palette

Method: Coarsening One Block

Method: Coarsening One Block

Method: Coarsening One Block

Method: Parameterization of Strain Energy

$$p = [p_{1}, p_{2}, p_{3}, p_{4}]$$

$$\lor(p) = \lor(F_{1}, p_{1}) + \lor(F_{2}, p_{2}) + \lor(F_{3}, p_{3}) + \lor(F_{4}, p_{4})$$

Coarse energy Sum over quadrature points Functions of deformation gradients F

Method: Parameterization of Strain Energy $p = [p_1, p_2, p_3, p_4]$ $\lor(\bigcirc , p) = \lor(F_1, p_1) + \lor(F_2, p_2) + \lor(F_3, p_3) + \lor(F_4, p_4)$

Fine material models

Method: Parameterization of Strain Energy

$$P = [P_{1}, P_{2}, P_{3}, P_{4}]$$

$$\lor (\bullet \bullet \bullet \bullet , p) = \lor (\bullet \bullet , p_{1}) + \lor (\bullet \bullet , p_{2}) + \lor (\bullet \bullet , p_{3}) + \lor (\bullet \bullet , p_{4})$$
Fit new parameters p to

Fine material models

Method: Parameterization of Strain Energy

$$V($$
, p) – 8 x 3 = 24 dimensional function in 3D

- Invariant to rigid motion
- Polyconvexity for stable simulation
- Extrapolate nicely

Method: Anisotropy Term

Summary: Fitting Strain Energy $\bigvee([, p) = \sum_{i} V(F_{i}, p_{i}) + C_{i}(||F_{i}v|| - 1)^{2}$

Coarse material parameters

Method: Construct Metamaterial Database

Method: Construct Metamaterial Database

Method: Construct Metamaterial Database

Outline

- Introduction
- Coarsening
- Database construction
- Hierarchical database
- Runtime coarsening
- Results

Hierarchical Database

Hierarchical Database

Hierarchical Database: Furthest Point Sampling

Choose initial materials

Repeatedly choose furthest material

Hierarchical Database: Furthest Point Sampling

- Choose initial materials
- Repeatedly choose furthest material

Compressed database

Hierarchical Database: Furthest Point Sampling

- Choose initial materials
- Repeatedly choose furthest material

Compressed database

Outline

- Introduction
- Coarsening
- Database construction
- Hierarchical database
- Runtime coarsening
- Results

Method: Online Lookup

Outline

- Introduction
- Coarsening
- Database construction
- Hierarchical database
- Runtime coarsening
- Results

Base materials: 3

61

Naïve Vs Coarsened Material

Fine Elements

Naïve Material

Data-driven Coarsening

Results: Parameter Fitting Validation

Twist Level 2

20.7x

George: no skeleton

13.4x

Character Design - George

3D-printed Fiber

Real-World Experiment

Real-World Experiment

Dynamics

Fine

Future Work

- Better energy functions for anisotropic hyperelastic materials
- Continuous material space alleviate combinatorial explosion
- Refine coarse simulation
- Combine with a fast solver such as multigrid

Conclusion

- Data-driven approach to model metamaterials
 - Non-linear hyperelastic materials
- Fast online lookup based on offline computation
- 8-400x speed up

Overview

- FEM for solid simulation
- Data-driven coarsening for static simulation
- Topology optimization with microstructures
- Designing dynamic mechanisms

Topology Optimization

High level specifications in a design domain

Optimized material distribution

Topology Optimization with Microstructures

Topology optimization

Topology Optimization - Example

Generating Microstructures using Topology Optimization

1. Initial samples of microstructures

- 1. Initial samples of microstructures
- 2. Repeat:
 - 1. Approximate material gamut with level set

- 1. Initial samples of microstructures
- 2. Repeat:
 - 1. Approximate material gamut with level set
 - 2. Identify samples near the boundary

- 1. Initial samples of microstructures
- 2. Repeat:
 - 1. Approximate material gamut with level set
 - 2. Identify samples near the boundary
 - 3. Compute level set gradient at each boundary sample

- 1. Initial samples of microstructures
- 2. Repeat:
 - 1. Approximate material gamut with level set
 - 2. Identify samples near the boundary
 - 3. Compute level set gradient at each boundary sample
 - 4. Generate new samples along gradient direction

- 1. Initial samples of microstructures
- 2. Repeat:
 - 1. Approximate material gamut with level set
 - 2. Identify samples near the boundary
 - 3. Compute level set gradient at each boundary sample
 - 4. Generate new samples along gradient direction

- 1. Initial samples of microstructures
- 2. Repeat:
 - 1. Approximate material gamut with level set
 - 2. Identify samples near the boundary
 - 3. Compute level set gradient at each boundary sample
 - 4. Generate new samples along gradient direction

- 1. Initial samples of microstructures
- 2. Repeat:
 - 1. Approximate material gamut with level set
 - 2. Identify samples near the boundary
 - 3. Compute level set gradient at each boundary sample
 - 4. Generate new samples along gradient direction

- 1. Initial samples of microstructures
- 2. Repeat:
 - 1. Approximate material gamut with level set
 - 2. Identify samples near the boundary
 - 3. Compute level set gradient at each boundary sample
 - 4. Generate new samples along gradient direction

- 1. Initial samples of microstructures
- 2. Repeat:
 - 1. Approximate material gamut with level set
 - 2. Identify samples near the boundary
 - 3. Compute level set gradient at each boundary sample
 - 4. Generate new samples along gradient direction

- 1. Initial samples of microstructures
- 2. Repeat:
 - 1. Approximate material gamut with level set
 - 2. Identify samples near the boundary
 - 3. Compute level set gradient at each boundary sample
 - 4. Generate new samples along gradient direction
- 3. Output level set for topology optimization

Examples with negative poisson's ratio

Overview

- FEM for solid simulation
- Data-driven coarsening for static simulation
- Topology optimization with microstructures
- Designing dynamic mechanisms

Dynamics-Aware Numerical Coarsening for Fabrication Design

Desai Chen^{1,3} David I.W. Levin² Wojciech Matusik¹ Danny M. Kaufman³

Introduction - Compliant Dynamic Mechanisms

Jumping stilts

Combustion soft robot [Bartlett et al., 2015] **Running blades**

Introduction – Computational Design

[Tolly et al. 2014]

[Chen et al. 2013, Prévost et al. 2013, Skouras et al. 2013, Bächer et al. 2014, Coros et al. 2014, Chen et al. 2014, Musialski et al. 2015]

Deformable Dynamics with Impact

ITTI ITTI

[Kim et al. 2015]

1-11-1

.

Experiment

10

Challenge – Efficiency

Accurate High-resolution nonlinear FEM

350K elements,18Gb Simulation time: days

dx = 0.375 mm dt = 1e-5 sec

Dynamics-Aware Coarsening (DAC)

Efficient Accuracy and Material Modeling

High-resolution nonlinear FEM

Unknown material parameters

Damping: **?**

350K elements, 18Gb

Simulation time: **days**

Method – Dynamics-Aware Coarsening

Method – Dynamics-Aware Coarsening

Coarse mesh

Method – Energy-based Coarsening

High-res FEA

Energy-based coarsened FEA

[Chen et. al 2015]

Dynamics-Aware Coarsening

DAC - Capturing Geometry

Coarsened finite elements

DAC – Matching Modal Shapes

Method – Physical Measurements

Calibration object

Method – Physical Measurements

120

Material parameter from measurement

Frequency Scaling

Measurement

Mode 1

Mode 2

Mode 3

Young's modulus E = ?

 $\ddot{q}_1 = \lambda_1 q_1 - b \lambda_1 \dot{q}_1$

 $\ddot{q}_2 = \lambda_2 q_2 - b \lambda_2 \dot{q}_2$

 $\ddot{q}_3 = \lambda_3 q_3 - b \lambda_3 \dot{q}_3$

Frequency Scaling Young's modulus E = ? $E \sim \lambda \sim f^2$ Measurement $\ddot{q}_1 = \lambda_1 q_1 - b \lambda_1 \dot{q}_1$ Mode 1 $\ddot{q}_2 = \lambda_2 q_2 - b \lambda_2 \dot{q}_2$ Mode 2 $\ddot{q}_3 = \lambda_3 q_3 - b \lambda_3 \dot{q}_3$ Mode 3

Method - DAC validation

125

Captured and DAC trajectories

Contact Experiment

Newmark DKE Simulation

Experiment

Boundary Balacing Impact

Free fall Initial contact Compression Restoration Rebound

Method – Newmark LCP Contact Model

Method – DKE Projection

DKE Stress Distribution

After impact Next time step MPa

$\mathsf{Method}-\mathsf{BBI}$

BBI Validation

Model Contact

Simulation

Experiment

Design Optimization

Optimizing Dynamic Mechanisms

Simulation

Experiment 151

Jumper Tasks

Unsuccessful Starting Jumpers

Unsuccessful Starting Jumpers

Our Simulation

Starting Jumper

Our Simulation

Starting Jumper

Conclusion

- Uncertainty
- Materials
- Design optimization

Acknowledgements: Uri Ascher, Gaurav Bharaj, Eitan Grinspun, Dan Ramirez, David Salesin, Etienne Vouga, NSF

Thank you!

