BendSketch: Modeling Freeform Surfaces Through 2D Sketching 通过绘制平面草图创造三维自由形状

Changjian Li^{1,2} Hao Pan² Yang Liu² Xin Tong² Alla Sheffer³ Wenping Wang¹

¹The University of Hong Kong ²Microsoft Research Asia ³University of British Columbia

Sketch-based 3D Modeling

• Sketch modeling: *intuitive* and *effective*

Teddy [Igarashi et al. 1999]

Paint 3D [Microsoft Crop.]

True2Form [Xu et al. 2014]

Our Goal

Model freeform 3D shapes with controlled curvature variation patterns, by sketching 2D scattered bending lines and other curves.

Our Goal

2D sketching

3D shape

Model freeform 3D shapes with controlled curvature variation patterns, by sketching 2D scattered bending lines and other curves.

Origin of Idea

Two very similar ideas presented in 2015.

Contour-based methods

- Smooth low-frequency surfaces [Igarashi et al. 1999; Nealen et al. 2007; Olsen et al. 2011; Yeh et al. 2016 ...]
 - Rounded shape

[Nealen et al. 2007]

Contour-based methods

- Smooth low-frequency surfaces [Igarashi et al. 1999; Nealen et al. 2007; Olsen et al. 2011; Yeh et al. 2016 ...]
 - Rounded shape

- Rotational symmetry surfaces [Gingold et al. 2009; Shtof et al. 2013; Chen et al. 2014; Miao et al. 2015 ...]
 - Limited variation (generalized cylinder, ellipsoid)

[Shtof et al. 2013]

Contour-based methods

- Smooth low-frequency surfaces [Igarashi et al. 1999; Nealen et al. 2007; Olsen et al. 2011; Yeh et al. 2016 ...]
 - Rounded shape


```
[Nealen et al. 2007]
```

- Rotational symmetry surfaces [Gingold et al. 2009; Shtof et al. 2013; Chen et al. 2014; Miao et al. 2015 ...]
 - Limited variation (generalized cylinder, ellipsoid)

Surfacing from curve networks

- Man-made shapes [Schmidt et al. 2009; Xu et al. 2014; Bessmeltsev et al. 2012; Pan et al. 2015; Zhuang et al. 2013 ...]
 - High-regularity and low curvature variation

[Shtof et al. 2013]

[Schmidt et al. 2009]

Domain specific methods

- Layered surfaces, developable surfaces... [Bessmeltsev et al. 2015; Jung et al. 2015; De Paolo and Singh 2015 ...]
 - Uneasy to generalize

Paolo et al. 2015]

Normal from sketches

- Infer normal from 2D sketches [Sykora et al. 2014; Shao et al. 2012; Xu et al. 2014; Bui et al. 2015; Iarussi et al. 2015]
 - Inaccurate to recover shape

[larussi et al. 2015]

Data-driven methods

- Retrieve shape or map sketch to 3D shape [Xu et al. 2013; Xie et al. 2013, Huang et al. 2016; Nishida et al. 2016]
 - Limited by dataset diversity
 - Model class-specific shapes

[Xu et al. 2013]

[Nishida et al. 2016]

[Lun et al. 2017]

Bending Lines

Bending lines convey surface bending directions [Eissen and Steur 2011]

Inverse Problem

Infer 3D surface from sketched bending curves

- Technical challenges:
 - Bas-relief ambiguity: convex/concave

Crater? [Pentland 84]

Ash cone [Pentland 84]

Inverse Problem

Infer 3D surface from sketched bending curves

- Technical challenges:
 - Bas-relief ambiguity: convex/concave
 - Bas-relief ambiguity: depth

Frontal view

[Belhumeur et al 99]

Side view

Inverse Problem

Infer 3D surface from sketched bending curves

• Technical challenges:

- Bas-relief ambiguity: convex/concave
- Bas-relief ambiguity: *depth*
- Sparse input strokes

Overview of Our Solution

- Convexity: stroke classification
 - Observations
 - Convex single stroke

- Convexity: stroke classification
 - Observations
 - Convex single stroke
 - Same convexity parallel stroke
 - Same/Opposite convexity sequential strokes

- Convexity: stroke classification
 - Observations
 - Convex single stroke
 - Same convexity parallel stroke
 - Same/Opposite convexity sequential strokes
 - Formulation: binary labeling

$$\min E(x) = \sum_{s \in \mathcal{V}} \frac{\theta(x_s)}{\theta(x_s)} + \sum_{(s,t) \in \mathcal{E}} \theta(x_s, x_t)$$

- Unary term: favor convex
- Binary term: relationship between strokes

- Convexity: stroke classification
 - Observations
 - Convex single stroke
 - Same convexity parallel stroke
 - Same/Opposite convexity sequence strokes
 - Formulation: binary labeling

$$\min E(x) = \sum_{s \in \mathcal{V}} \theta(x_s) + \sum_{(s,t) \in \mathcal{E}} \theta(x_s, x_t)$$

- Unary term: favor convex
- Binary term: relationship between strokes
- Allow user edit stroke label

User correction

• Sparse to dense: direction field diffusion [larussi et al. 2015]

$$E_{BendField}(u,v) = \frac{1}{|\Omega|} \int_{\Omega} \|\nabla_{u}v\|^{2} + \|\nabla_{v}u\|^{2} \,\mathrm{d}\sigma$$

Projected curvature directions u, vfollow the bending stroke directions, and initialized by harmonic 4-direction fields [Diamanti et al. 2014].

• *Depth*: surface from projected curvature tensors

Height field surface *z* from curvature:

Minimize
$$E_{match}(z) = \frac{1}{|\Omega|} \int_{\Omega} ||dN \cdot u - \lambda_u u||^2 + ||dN \cdot v - \lambda_v v||^2 d\sigma$$

curvature tensor matching

Surface & lifted strokes

• Depth: surface from projected curvature tensors

Height field surface *z* from curvature:

Minimize
$$E_{match}(z) = \frac{1}{|\Omega|} \int_{\Omega} ||dN \cdot u - \lambda_u u||^2 + ||dN \cdot v - \lambda_v v||^2 d\sigma$$

with magnitudes $\lambda_u \lambda_v$:

Minimize $E_{\lambda}(\lambda_{u},\lambda_{v}) = \frac{1}{|\Omega|} \int_{\Omega} ||\nabla_{u}\lambda_{v}||^{2} + ||\nabla_{v}\lambda_{u}||^{2} + \beta(||\nabla_{u}\lambda_{u}||^{2} + ||\nabla_{v}\lambda_{v}||^{2}) d\sigma$ constrained by the spatial curvature of lifted strokes.

Search $(z, \lambda_u, \lambda_v)$ in a fast iterative process, solving linear equations per iteration.

Boundary conditions

- Position constraints
- Regularity constraints: smoothness

Boundary conditions

- Position constraints
- Regularity constraints: smoothness

Other supported strokes

- Contour stroke: normal constraints

Boundary conditions

- Position constraints
- Regularity constraints: smoothness

Other supported strokes

- Contour stroke: normal constraints
- Flat stroke: parallel normal vector
- Sharp feature: sharp angle

Line Mode	
Contour	
Bend	
Flat	
Sharp feature	
Valley	
Ridge	

Boundary conditions

- Position constraints
- Regularity constraints: smoothness

Other supported strokes

- Contour stroke: normal constraints
- Flat stroke: parallel normal vector
- Sharp feature: sharp angle
- Ridge/valley stroke: a set of bending lines with known convex and concave

Multi-View Sketching

Sketching on the current view

Surface patch for the current view

Patches merged

Results

Stroke number: 20 ~ 40. Time: < 3s per patch computation.

Stroke number: 20 ~ 40. Time: < 3s per patch computation.

Validation

Compare with the ground truth data

• 1/8 torus and shoe model

User Evaluation

Users

- 7 novice users w/o background
- 2 professional 3D artists

Results

- ~30 min learning
- ~10 min creation
- robust to user input diversity

Comparison

- BendField [larussi et al. 2015]
 - Curvature direction field
 - Inaccurate normal field for 3D reconstruction

- Our method:
 - Complete curvature tensor field (direction, magnitude)
 - Real 3D shape

BendField with editing [larussi et al. 2015]

Ours

Comparison

• Shape from Shading [Barron and Malik 2015]

Conclusion

An intuitive and effective tool to model freeform shapes with complex curvature variation.

- Technical contributions:
 - Disambiguate bending stroke convexity
 - Estimate bending magnitudes
 - Construct surface from sparse bending strokes

Limitation and Future Work

Limitation

• Self-occlusion or layered objects should use multi-view pipeline

Future Work

- Improve user interface
- Extract information from reference image
- Integrate with other tools

Open Image		
Add View		
Pop Stroke		
Curv Scale	1.000	
Curv Contro	I OFF	
L		1

Input Mode

F

3x playback

ふいい い