

Wasserstein Blue Noise Sampling

Hongxing Qin^{1,2}, Yi Chen¹, Jinlong He¹, Baoquan Chen²

¹Chongqing University of Posts and Telecommunications ²Shandong University

Blue noise distribution: random & uniform

Sampling

Number of Neighbors

Blue noise sampling application

Ray tracing [Cook 1984]

Object displacement [Wei et al. 2010]

Important sampling [Ostromoukhov et al. 2007]

Point-based Modeling [Öztireli et al. 2010]

Stippling [Balzer et al. 2009]

Remeshing [Jiang et al. 2015]

Previous work

Stochastic sampling

Dart throwing method and its variations [Cook 86, Mitchell 87, Jones 06, White et al. 07, Ebeida et al. 12, Yuksel 15]

Title-based sampling [Kopf 06, Wachte 14]

Optimal sampling

- Lloyd relaxation method [Lloyd 82]
- **Kernel density model** [Fattal 11, Jiang et al. 15]

Lloyd relaxation method

CCVT

Improving controllability of point distribution quality !

Limitations of previous Lloyd relaxation method

Uncontrollability of the solution

Limitations of previous Lloyd relaxation method

Conflicts on multi-class sampling

Limitations of previous Lloyd relaxation method

D Relaxing the optimal transport problem

Controlling spatial regularity of the point distribution

Relaxing the conflict of multi-class sampling

General optimal transport problem

Density function
$$\varrho(x)$$

Sampling
Points $\{x_i\}$
 $\mu = \sum_i \rho_i \delta_{x_i} \quad s.t. \sum_i \rho_i = 1, \delta_{x_i} = \begin{cases} 1 & x_i \in \Omega \\ 0 & \text{others} \end{cases}$
Probability measure
 $\mu = \arg \min_{\mu} W_p^p(\mu, \nu) = \arg \min_{\mu} \int_{X \times \Omega} d(x_i, y)^p d\pi(x_i, y)$
Constrained
Wasserstein barycenter $s.t. \int_{\Omega} \pi(x_i, y) = \rho_i, \sum_i \int_{U \subseteq Q} \pi(x_i, y) dy = \nu(U), \pi(x_i, y) \ge 0$

General optimal transport problem

Transport Plan on 1D

Relaxed optimal transport problem

Entropic regularization term

$$\mu = \arg\min_{\mu} W_p^p(\mu, \nu) = \arg\min_{\mu} \inf_{\pi} \int_{X \times \Omega} d(x_i, y)^p d\pi(x_i, y) + \underline{\epsilon} H(\pi)$$

s.t. $\int_{\Omega} \pi(x_i, y) = \rho_i, \sum_i \int_{U \subseteq Q} \pi(x_i, y) dy = \nu(U), \pi(x_i, y) \ge 0$

Core idea

Relaxed optimal transport problem Entropic regularization term

$$\mu = \arg\min_{\mu} W_p^p(\mu, \nu) = \arg\min_{\mu} \inf_{\pi} \int_{X \times \Omega} d(x_i, y)^p d\pi(x_i, y) + \epsilon H(\pi)$$

s.t. $\int_{\Omega} \pi(x_i, y) = \rho_i, \sum_i \int_{U \subseteq Q} \pi(x_i, y) dy = \nu(U), \pi(x_i, y) \ge 0$

Single class samplings on different ε

Single class samplings on different ε

Multi-class sampling

$$\bar{\mu} = \arg\min_{\bar{\mu}} \sum_{i=1}^{K} \lambda_i W_p^p(\mu_i, \nu_i)$$

s.t. $\sum_{i=1}^{K} \lambda_i = 1, (\lambda_i \ge 0)$

Individual probability measures

$$\overline{\mu} = \{\mu_1, \mu_2, \dots, \mu_N, \mu_{N+1}, \dots, \mu_K\}$$

Combined probability measures

Discrete representation

Discretositriobability density

$$\mu = \sum_{i} \rho_{i} \delta_{x_{i}} \quad s.t. \sum_{i} \rho_{i} = 1, \delta_{x_{i}} = \begin{cases} 1 & x_{i} \in \Omega \\ 0 & \text{others} \end{cases}$$

$$\mathbf{X} = \arg\min_{X} \sum_{i=1}^{K} \lambda_i < \mathbf{D}_i, \prod_i >$$

D_{*i*}: the distance matrix

 \prod_i : the transport plan matrix

A loop iteration algorithm on GPU

\square An iterative Bregman projection for \prod_i

$$W_p^p(D,\Pi) = \arg\min_{\Pi} < D, \Pi > + \varepsilon H(\Pi)$$

A Newton iterative method for **x**

 $\mathbf{X} = (1 - \theta)\mathbf{X} + \theta \mathbf{Y} \mathbf{\Pi}^{\mathrm{T}} \mathbf{diag}(\rho^{-1}), 0 < \theta < 1$

[Cuturi 2013]

Comparison on single class sampling

Evaluation of sampling ratio

Two-class sampling

Conflicts ratio

$$R = \sum_{i=1}^{N} \sum_{j=1}^{n_i} \left\| C_{x_i^j}^I - C_{x_i^j}^C \right\| / \sum_{i=1}^{N} \sum_{j=1}^{n_i} D(x_i^j)$$

Regularization Parameter in Two Class Sampling

Adaptive two-class sampling

Dart throwing [Wei 2010]

Ours

The comparison for three-class sampling

Dart throwing [Wei 2010]

The comparison for three-class sampling

SPH [Jiang et al. 2015]

The comparison for three-class sampling

Seven-class sampling

Sampling on a point set surface

Running time in log scale for single sampling

Running time and memory usage for multi-class sampling

Number of	Times(s)		Memory(M)
Class	[Wei 2010]	Ours	Ours
2	34.769	14.670	128.11
3	151.727	37.553	288.11
7	414.031	212.133	448.31

Applications: visual abstraction

Applications: color stippling

Applications: object placement

Surface construction of noisy point clouds

Conclusions

Multi-class blue noise sampling as the constrained Wasserstein barycenter

Relaxing optimal transport problem via the entropic regularization term

Future work

D The synthesis of point distributions

DThe efficiency for large datasets

Acknowledgments

D Reviewers

Discussions and suggestions

- Liyi Wei, The University of Hong Kong
- Lin Lu, Shandong University
- > Yunhai Wang, Shandong University

🗖 Data

Zhonggui Chen, Xiamen University

Thank you!

<u>Code</u>: https://github.com/Hongxing-CQUPT/SamplingCUDA