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We present a new method for real-time physics-based simulation supporting

many different types of hyperelastic materials. Previous methods such as

Position-Based or Projective Dynamics are fast but support only a limited
selection of materials; even classical materials such as the Neo-Hookean
elasticity are not supported. Recently. Xu et al. [2015] introduced new
“spline-based materials” that can be easily controlled by artists 10 achieve

desired animation effects. Simulation of these types of materials currently

relies on Newton's method, which is slow, even with only one iteration per

timestep, In this article, we show that Projective Dynamics can be interpreted
as & quasi-Newton method. This insight enables very efficient simulation of
a large class of hyperelastic materials, including the Neo-Hookear
based mat
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1. INTRODUCTION

Physics-based animation is an important tool in computer graphics,
even though creating visually compelling simulations often requires
a lot of patience, Waiting for results is not an option in real-time
simulations, which are necessary in applications such as computer
games and training simulators (¢.g.., surgery simulators). Previous
methods for real-time physics such as Position-Based Dynamics
[Miller et al. 2007 or Projective Dynamics [Bouaziz et al. 2014]
have been successfully used in many applications and commercial
products, despite the fact that these methods support only a re-
stricted set of material models. Even classical models from contin-
uum mechanics, such as the Neo-Hookean, St. Venant-Kirchoft, or
Mooney-Rivlin materials, are not supported by Projective Dynam-
ics. We tried to emulate their behavior with Projective Dynamics,
but despite our best efforts, there are still obvious visual differences
when compared to simulations with the original nonlinear materials.

The advantages of more general material models were nicely
demonstrated in the recent work of Xu et al. [2015], who pro-
posed a new class of spline-based materials particularly suitable for
physics-based animation. Their user-friendly spline interface en-
ables artists to casily modify material properties in order to achieve
desired animation effects. However, their system relies on Newton's
method, which is slow, even if the number of Newton's iterations
per frame is limited to one. Our method enables fast simulation
of spline-based materials, combining the benefits of artist-friendly
material interf
rapid iterations and/or higher resolutions.

Physics-based simulation can be formulated as an optimiza-
tion problem where we minimize a multivariate function g. New-
ton's method minimizes ¢ by performing descent along direction
¢ is the Hessian matrix, and Vg is the gra-
dient. One problem of Newton's method is that the Hessian Vg can
be indefinite, in which case Newton's direction could erroncously
increase g. This undesired behavior can be prevented by so-called
definiteness fixes [Teran et al. 2005; Nocedal and Wright 2006]
While definiteness fixes require some computational overheads, the
slow speed of Newton's method is mainly caused by the fact that

es with the advantages of fast simulation, such ax
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Real-time Physics
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muscle simulation Image courtesy of Weta Digital

Off-line Physics
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[VirtaMed],

Applications with non-negotiable latency and accuracy

E.g. Virtual Surgery
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Neo-Hookean, our method

Goal: Fast simulation of general hyperelastic materials
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Goal: Fast simulation of general
hyperelastic materials

Si. lw
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Related Work: Classic work

[Baraff and Witkin 1998] [Goldenthal et al. 2007]  [Tournier et al. 2015]
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Related Work: Position Based Dynamics

[Muller et al. 2007] [Macklin et al. 2016]
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Related Work: Projective Dynamics

[Liu et al. 2013] [Bouaziz et al. 2014] [Narain et al. 2016]

Quasi-Newton Methods for Real-time Simulation of Hyperelastic Materials
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Related Work: Chebyshev Methods

[Wang 2015] [Wang and Yang 2016]
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Related Work: Quasi-Newton Methods
in Geometry Processing

[Kovalsky et al. 2016] [Rabinovich et al. 2017]
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Quasi-Newton Methods
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Spatial Discretization
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Temporal Discretization

Already known

X0
[ | [ | [ | [ | [ | [ | [ |
| | | | | | |
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Implicit Euler Time Integration
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Variational Implicit Euler

0 0 00

. . \/ . . .
inertial potential Elastic potential

N\

y.. pure inertial motion (Newton’s 15t Law)
= x, + hv,
mln%léﬁm prtMl{tﬁat erersif ()
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Variational Implicit Euler

1
mxini (x —y)IM(x —y) + h?E (x)

— _
v

inertial potential Elastic potential

Implicit Euler:
Compromise between inertia and elasticity
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Mass-spring System: Basis

Hooke’s Law:

1
E(p1,p2) =5 k(Ips = pall - 1)?

Non-quadratic
Non-convex

P1
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Non-convex Potential
P /| rest length‘ E((1—-1t)a+th)

0.2

0.157

Spri n/génergy

0.05¢
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Standard Solution: Newton’s Method

1
mxini (x —y)TM(x —y) + h*E(x)
N g _ .
© ®

® » Slow
» V2E depends on x

& » Non-convex
» The Hessian M + h*V2E can be indefinite
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Standard Solution: Newton’s Method
E((1—-t)a+th)

0.2

0.157

Spring Energy
o

0.05 | A
D I 1 I
05 0 0.5 1
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ldeal Problem Reformulation

Large Convex Quadratic Problem

(Ideally with Constant System Matrix)

aoeees --- @

Many Small Non-convex Problems
(Ideally Independent)
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Hooke’s Law with auxiliary variables

» For the i-th spring:
>E;(x) = %ki(npu — pi2ll =17

» Introduce auxiliary variable d; where ||d;|| = r;

d;
Di2
Pi1
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Hooke’s Law with auxiliary variables

|1 .
Ilarlrilulgri (E killlpir — Piz — di”)z) = Eki(”pm —pi|l — 17)?

’When di =T1; Pir"Pi
Ilpi1—Dpi2ll

Pi1
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Hooke’s Law with auxiliary variables

E(x) = z (”CIITLIHE ( ki(llpin — Piz — di||)2) )

L

E(.X) — mln k (”pll Pi> — l”)
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Variational Time Integration with
Auxiliary Variable

mxin% (x —y)IM(x —y) + h?E ()

1

midnExTAx +x'(Bd +¢),s.t.deM
X,

d e m < ||d;| =,
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Optimization

1
midnExTAx +xT'(Bd +¢),s.t.d eM
X,

» A, B, c does not depend on x or d

» If we fix x -> easy to solve for d

» If we fix d -> easy to solve for x

» Invites alternate solver (local/global)
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Local Step

» For each spring, project to unit length using the
current x to find d;

» Trivially Parallelizable

d;
Di2
Pi1
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Global Step

1
midnExTAx +xT'(Bd +¢),s.t.d eM
X,

Fixd:x" = —A~'(Bd + ¢)

» Matrix A4 is:
» Independent of x and d (Constant)
» Positive Definite
» Thus can be pre-factorized (using e.g. Cholesky)
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Alternating Solver

Large Convex Quadratic Problem

(with Constant System Matrix)

aoseead --- @

Many Small Non-convex Problems




Performance

10°
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102
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Remark: Fast Mass-spring Systems

mxin% (x —y)IM(x —y) + h?E ()

1 1
min | 5k;(lpix —piz — dilD? | = S ki(llpiy — Pzl — 7)?
ld;ll=r; \ 2 2

|

1

midnExTAx +xT'(Bd +¢),s.t.deM
X,
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Beyond Mass-spring Systems

d;

Pi1
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Distance from Constraint Manifold

pPi1 — Piz- Naive differential operator

1 |i1
Pi1 — Piz = GiX :
—1]1i2
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Distance from Constraint Manifold

Pi1 — Piz = Gix

1
E(x) = min (2 (i ki(llpin — Diz — di”)2>>

l

E(x) = min (2%(”6 = dil]) ))
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Deformation Gradient

Rest pose X Current pose x
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Distance from Constraint Manifold

E(x) = min (Z(wxna x = dill) ))
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Intuitive Projection Manifold: SO(3)

»SO(3) ... Best Fit Rotation Matrix
» “As Rigid As Possible” [Chao et al. 2010]

Resolution Resolution Resolution Resolution
100° 502 , 509 5

frJ
1\
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Intuitive Projection Manifold: SL(3)

» SL(3) ... Group of Matrices with det =1
» Volume Preservation

Strain: 1x Strain: 1x Strain: 10x Strain: 10x
Volume: [x Volume: 40x Volume: 1x Volume: 40x
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Other Constraint Manifolds
(Example Based)

Examples

3.4dms/iteration - 10 iterations

Example-Based 4230 DoFs - 3780 constraints
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Other Constraint Manifolds
(Laplace-Beltrami operator)

Bending: 1x Bending: 2.5x Bending: 25x

0.9ms/iteration - 10 iterations

Cvlinder Buckling 4880 DoF's - 7840 constraints
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Remark: Projective Dynamics

E(x,d) = rgicln (Z(Wi(IIG,-x — di||)2)> s.t.d eEM

1
min g(x,d) = min (— xTAx + xT(Bd + c)) s.t.deM
x,d x,d \ 2

» Like before, A, B, c does not depend on x and d
» If we fix x -> easy to solve for d: Projection
» If we fix d -> easy to solve for x: x x= —A~1(Bd + ¢)
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Problems: Projective Dynamics

E(x,d) = rgicln (Z(Wi(IIG,-x — di||)2)> s.t.d eEM

1
min g(x,d) = min (— xTAx + xT(Bd + c)) s.t.deM
x,d x,d \ 2

» Like before, A, B, c does not depend on x and d
» If we fix x -> easy to solve for d: Projection
» If we fix d -> easy to solve for x: x x= —A~1(Bd + ¢)
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Spline-Based Materials [Xu et al. 2015}

Polynomial

SOft ARAP St]ff ARAP Material
[Xu et al. 2015]
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How to generalize Projective Dynamics?

Soft Projective Dynamics Material Stiff Projective Dynamics Material Polynomial Material

frame 47 frame 47
shape
distorted

impulsive
motion frame 139 frame 139 frame 139
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Reformulation of Projective Dynamics

1

min (E xTAx + xT(Bd + c)) s.t.d eM
X,

(1 7 T
min (Ex Ax + x" (Bd(x) + c))

X
N Y,
N
g(x)
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Reformulation of Projective Dynamics

(1 T
min (Ex Ax + x' (Bd(x) + c))
N J
Y
g(x)

Y
0
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Projection Differential

516x — d(0)||? = (6x — d(x)) Gox

Sd(x)

Towards Real-time Simulation of Deformable Objects




Reformulation of Projective Dynamics
. 1 T T
min (Ex Ax + x' (Bd(x) + c))
N J
e
g(x)

Vg(x) = Ax + Bd(x) + ¢ =Bt
A Vg(x) = x +\A‘1(Bd(x) + ¢)

_x*

x*=x—-—A"1Vg(x)
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Reformulation of Projective Dynamics

Compare to one Newton step:
x"=x—alv’gx) |7 Vg (x)

» «: Step size, usually decided by linesearch, typical value is 1. \

x*=x—-—A"1Vg(x)
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Quasi-Newton Formulation

x — (o] Vg (x)
1

a =

Projective Dynamics:
A Quasi Newton method applied on a special type of energy \

A =M+hZZwiGiTGi=M+h2L
[
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Supporting More General Materials
x—aA Vg(x)

This quasi-Newton formulation can be used for any
hyperelastic material, but:

We need to do line-search
a = 1 only works for Projective Dynamics
We need to define the proper weights w;

° A=M+h22lEFTGl=M+h2L
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Strain-Stress Curve for PD
° A:M_I_hzZlEkTGl:M‘l‘th

Stress

Strain
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Supporting More General Materials
° A:M_I_hzZlEkTGl:M‘l‘th

Stress

/ Strain
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Supporting More General Materials
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We can do more

Broyden, Fletcher, Goldfarb, Shanno
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L-BFGS Acceleration

Projective Dynamics

e

Our Method

e

Exact Solution

—
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L-BFGS Acceleration

Our Method Projective Dynamics

. 9
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L-BFGS with rest-pose Hessian

109 ¢ 107§
1[]-2 I -]D-E L
2
uB]
g
= ol 104l Our Hessian
E approximatio

Fest-pose
Hessian

109 F

0.5 1 15 0O 10 20 30 sl
time number of iterations
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L-BFGS with Scaled Identity

m”L_ m”rh_

1[]-2 I -]D-E L
2
4]
i
=
g1n4- 104 F
Scaled
| dentity
100 F
0.5 1 15 0O 10 20 30
time number of iterations
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L-BFGS with updating Hessian

107 109
1[]-2 I -]D-E L
2
4]
g
E 1[]_4 | 10 al our He.ssia.n‘
W approximatio

Hessian evaluate
once every frame

109 F

0.5 1 15 0O 10 20 30
time number of iterations
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Performance of L-BFGS family

10° 1

Our Hessian
approximation

Scaled
Identity

-2
10 Rest-pose

Hessian

Stiffness-warped
rest-pose Hessian

-4
10 Hessian evaluated

once every frame

relative error

Newton's method
(Hessian evaluated
every iteration)

10°°

] L 1 1

15 0 10 20 30
time number of iterations
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()
o
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-~
X1
©
e

102}

Iterative Solvers (CG)

Our method with
prefactorized direct solver
Our method with

5 CG iterations

. Our method with

15 CG iterations
Newton's method
with direct solver
Newton's method
with 5 CG iterations
Newton's method
with 15 CG iterations
[Gast et al. 2015] with
5 CG iterations
_[Gast et al. 2015] with
15 CG iterations
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Results: Accuracy

Our method
: % //SV/;//}/ i /41//{;1?'[_1)1/& 77 (%!
- /] 4!
Exact solution
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i A AAAAA 1
. 1
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Results: Robustness

Randomized vertices

3

L
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Results: Collision
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Results: Anisotropy

ln".
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Results: Spline-Based Materials

Spline-based material A Spline-based material B
[Xu et al. 2015] [Xu et al. 2015]
[

Neo-Hookean

Our method: 12.3 ms/frame Our method: 21.2 ms/frame Our method: 19.7 ms/frame
Newton: 178 ms/frame Newton: 188 ms/frame Newton: 187 ms/frame
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Remark

» Our method is:

» General: supports a variety types of hyperelastic materials

» Fast: >10x faster compared to Newton’s method to achieve similar accuracy level

» Simple: avoids Hessian computation, avoids definiteness fix
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Future Work

More Generalization? Relaxation, creep, hysteresis
Performance? Collision and topology change on the fly.

Other Integrators? How to make symplectic integrators fast and stable?

vV v v Vv

More Applications? Virtual surgery, real-time physics in VR, fast prototyping
for fabrication.
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Thank You

http://www.seas.upenn.edu/~liutiant/
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