

Deformation-driven Shape Correspondence Via Shape Recognition

Chenyang Zhu, Renjiao Yi, Wallace Lira, Ibraheem Alhashim, Kai Xu, Hao (Richard) Zhang

Shape Correspondence

• Matching man-made shapes is a fundamental task for structure analysis:

Structure Morphing

Structure Synthesis

Shape Correspondence

• Part-level correspondence vs. Point-level correspondence

- Large variability in geometry & structure
- Inconsistent segmentation vs. fine grained matching

Topology Variation!

Previous Works

- Most previous correspondence methods are based on:
 - Part similarity
 - Distortion

et al.

13]

Alhashim et al. 15]

Previous Works

- GeoTopo, our first **deformation-driven** paper
- Handle topology variation
- Best matching = minimal structure distortion
- Handcrafted deformation energy 🛞

Data-driven Part Correspondence?

• How to define a good energy measure?

Handcrafted Energy

Data-driven Energy

Data-driven Part Correspondence?

Too coarse to help fine grained matching Existing Dataset

Label it ourselves

Pairwise labeling gives workload explosion

Key Observation

- Still use deformation-driven correspondence approach
- **Data-driven** deformation energy
- Turn correspondence into a **recognition** problem
 - Training data: use **ShapeNet directly**
 - No part label needed

Key Idea

- Distortion is **HARD** to measure
- Best matching = Minimal structure distortion

Key Idea

- Distortion is **HARD** to measure **but recognition is not**
- Best matching = Minimal structure distortion

Main Contributions

• Key contribution:

Data-driven plausibility measure

- Coarse to fine correspondence search strategy:
 - Handle inconsistent segmentation
 - More efficient

- The correspondence search is based on binary graph partition
 - Each shape is represented as a graph G
 - Binary graph partition = Splitting G into two vertex-disjoint subgraphs

- The correspondence search is based on binary graph partition
 - Each shape is represented as a graph G
 - Binary graph partition = Splitting G into two vertex-disjoint subgraphs

- Three termination conditions:
 - Only one-to-one or one-to-many correspondences
 - The plausibility of all child nodes is below a threshold
 - The plausibility of all child nodes are equal within a tolerance margin

- Replace matched parts, then propagate:
 - Connectivity recovery
 - Symmetry recovery

After Replacement

Connectivity Recovery

Data-driven Plausibility Measure

- What to do:
 - Training data preparation
 - Projected image approach
 - Middle-level elements, multi-view feature encoding

Training Data

- We have a lot of positive examples already
- An in-between shape that is generated using incorrect correspondences should either:
 - lack some relevant sub-structures
 - have a messy global structure

Projected Image Approach

- An effective way to compare 3D shapes
- It is enough to use canonical views as references

- We need a feature which can not be too global or too local
- Middle-level elements(sub-structure) based feature
- Playsible Reasonable combination of suitable sub-structure

- Good middle-level elements:
 - neither too unique, to capture relevant structures of 3D shapes
 - nor too common, aiming to remain flexible
- Most representative ones

Samples More than 50k

K-means clustering ¹/₄ samples

Self-tuning spectral clustering

Less than 500

Term Frequency(TF) Document Frequency(DF)

IF-IDF sorting Top 60

• We extend the well-known convolution operation to perform feature encoding of a given depth image

- We encode the 2D information into1D by defining 5 slices of accumulation histograms along both the horizontal and vertical directions
- A three-class SVM is trained to predict the plausibility

Results

Results

Results

Comparison with GeoTopo

- [GeoTopo] Deformation-Driven Topology-Varying 3D Shape Correspondence
 - Works on pairs
 - State-of-art
 - Topology variation
 - Human defined energy
 - Bottom-up search

Evaluation

• Comparison with Geotopo

Category	GeoTopo			Ours			
	Precision	Recall]	Precision	Recall	β	
Chair	0.69	0.67		0.83	0.83	0.2	
Table	0.63	0.61		0.81	0.86	0.2	
Bed	0.60	0.62		0.78	0.81	0.3	
Airplane	0.60	0.68		0.80	0.85	0.25	
Velocipedes	0.47	0.44		0.43	0.49	0.35	
Velocipedes	0.47	0.44		0.43	0.49	0.35	

Limitation

- Wrong correspondences may still generate plausible shapes
- May fail on shapes with many small parts

Wrong match but plausible in-between

- Speeding up data-driven correspondence evaluation
- Partial matching
- Extending to the co-analysis setting
- Applying deep learning approach

Thanks

ACKNOWLEDGMENTS

Anonymous reviewers, authors who provided code, funding from:

