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Computational Design and Fabrication Group 

• Charlie Wang (CUHK->TU Delft), Jun Wu (TU Munich->Denmark->Delft) 

• Generative design | Soft robots | 3D printing and robot manufacturing 
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Rob Scharff RoboFDM, Wu et al. 2017 



Outline 

• Basics of Topology Optimization 

 

• Topology Optimization for Additive Manufacturing 
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Bone Chair by Joris Laarman 
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Topology Optimization Examples 

 

Airbus & EOS, 2014 

Qatar national convention 

Reconstructive surgery   

Glaucio H. Paulino @ UIUC 

Airbus APWorks, 2016 Frustum Inc. 
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Full-scale aircraft wing design 

 

Airbus & EOS, 2014 

Aage et al., Nature 2017 
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Classes of Structural optimization: Sizing, Shape, Topology 

 

Initial 

Optimized 

Sizing Shape Topology 
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• Design the stiffest shape, by placing 𝟔𝟎 Lego blocks into a grid of 𝟐𝟎 × 𝟏𝟎 

A Toy Problem 

20 

10 
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A Toy Problem: Possible Solutions 

• Number of possible designs 

– 𝐶 200,60 =
200!

60! 200−60 !
= 7.04 × 1051 

• Which one is the stiffest? 

 

Design A  Design B  

Design C  
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A Toy Problem: Possible Solutions 

• Which one is the stiffest? 

 

Design B  

Design C  

Design A  



Design B  

Design C  

Design A  

A Toy Problem: Possible Solutions 

• Which one is the stiffest? 
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Topology Optimization Animation 

𝑓 
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Topology Optimization 

Minimize:         𝑐 =
1

2
𝑈𝑇𝐾𝑈 

Subject to:       𝐾𝑈 = 𝐹  

 

𝑘 

𝑘𝑢 = 𝑓  

𝑓 

𝑢 

𝑐 =
1

2
𝑓𝑢 =

1

2
𝑘𝑢2  Elastic energy 

Static equation 
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Topology Optimization 

Minimize:         𝑐 =
1

2
𝑈𝑇𝐾𝑈 

Subject to:       𝐾𝑈 = 𝐹  

          𝜌𝑖 =  
1  (solid)
0   (void)

, ∀𝑖 

          g =  𝜌𝑖𝑖 − 𝑉0 ≤ 0  

1 1 1 1 
1 1 1 1 1 

1 1 1 1 1 
1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 
1 1 1 1 1 

1 1 1 1 

Design variables 

Volume constraint 

Elastic energy 

Static equation 

𝜌𝑖 ∈ [0 , 1] 
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Topology Optimization 

1 1 1 1 
1 1 1 1 1 

1 1 1 1 1 
1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 
1 1 1 1 1 

1 1 1 1 

Compute 

displacement 

(KU=F) 

Sensitivity 

analysis 

Update 𝜌𝑖 

Converged? 
No 

Yes 

Minimize:         𝑐 =
1

2
𝑈𝑇𝐾𝑈 

Subject to:       𝐾𝑈 = 𝐹  

          𝜌𝑖 ∈ [0,1], ∀𝑖 

          g =  𝜌𝑖𝑖 − 𝑉0 ≤ 0  
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Topology Optimization Animation 

𝑓 

21 



Demo 

• www.topopt.dtu.dk 
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Topology Optimization 

1 1 1 1 
1 1 1 1 1 

1 1 1 1 1 
1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 
1 1 1 1 1 

1 1 1 1 

Compute 

displacement 

(KU=F) 

Sensitivity 

analysis 

Update 𝜌𝑖 

Converged? 
No 

Yes 

Minimize:         𝑐 =
1

2
𝑈𝑇𝐾𝑈 

Subject to:       𝐾𝑈 = 𝐹  

          𝜌𝑖 ∈ [0,1], ∀𝑖 

          g =  𝜌𝑖𝑖 − 𝑉0 ≤ 0  

90% 
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Geometric Multigrid: Solving 𝐾𝑢 = 𝑓  

• Successively compute approximations 𝑢𝑚 to the solution  u = lim
𝑚→∞

𝑢𝑚 

• Consider the problem on a hierarchy of successively coarser grids to 

accelerate convergence 

 
Relax 𝐾ℎ𝑢 ℎ ≈ 𝑓ℎ 

Residual 𝑟ℎ = 𝑓ℎ − 𝐾ℎ𝑢 ℎ 

Interpolate 

𝑒 ℎ = 𝐼2ℎ
ℎ 𝑒2ℎ 

Relax 𝐾ℎ𝑢 ℎ ≈ 𝑓ℎ 
Correct 𝑢 ℎ ← 𝑢 ℎ + 𝑒 ℎ 

Restrict 

𝑟2ℎ = 𝑅ℎ
2ℎ𝑟ℎ 

Solve 𝐾4ℎ𝑒4ℎ = 𝑟4ℎ 
W. Briggs, A multigrid tutorial, 2000 

Ωℎ 

Ω2ℎ 

Ω4ℎ 

⋮ 24 



Memory-Efficient Implementation on GPU 

• On-the-fly assembly 

– Avoid storing matrices on the finest level  

• Non-dyadic coarsening (i.e., 4:1 as opposed to 2:1) 

– Avoid storing matrices on the second finest level  

 Ωℎ 

Ω2ℎ 

Ω4ℎ 

⋮ 

Wu et al., TVCG’2016 

Dick et al., SMPT’2011 
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High-Resolution Design 

Resolution: 621×400×1000 

#Element 14.2m 

Time: 12 minutes 
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Larsen et al. 1997 
Negative Poisson's ratio 

Sigmund &Torquato  1996 
Negative thermal expansion 

Sigmund 2000 

Alexandersen et al. 2016 Maute & Pingen 

Electric actuator 

Natural convection Fluid flow 
29 



A General Formulation 

1 1 1 1 
1 1 1 1 1 

1 1 1 1 1 
1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 
1 1 1 1 1 

1 1 1 1 

Solve state 

equation 

Sensitivity 

analysis 

Update 𝜌𝑖 

Converged? 
No 

Yes 

Minimize:         𝑐(𝜌) 

Subject to:       𝜌𝑖 ∈ [0,1], ∀𝑖 

          𝑔𝑖(𝜌) ≤ 0  
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Outline 

• Basics of Topology Optimization 

 

• Topology Optimization for Additive Manufacturing 
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Additive Manufacturing: Complexity is free 

 

Joshua Harker Scott Summit TU Delft & MX3D, 2015 
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Complexity is free? … Not really! 

• Printer resolution: Minimum geometric feature size 

• Layer-upon-layer: Supports for overhang region 

• Shell-infill composite 

Supports Infill Tiny details 

Ralph Müller 

Paul Crompton 

Concept Laser GmhH mpi.fs.tum.de 
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Outline 

• Basics of Topology Optimization 

 

• Topology Optimization for Additive Manufacturing 

– Geometric feature control by density filters 

– Geometric feature control by alternative parameterizations 
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Test case 

• Messerschmidt-Bölkow-Blohm (MBB) beam 

35 



Test case 
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Geometric feature control by density filters 

(An incomplete list) 

 

Minimum feature size, Guest’04 Coating structure, Clausen’15 

Self-supporting design, Langelaar’16 Porous infill, Wu’16 

Reference 
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Infill in 3D Printing: Regular Structures 

 

38 
www.makerbot.com 

3dplatform.com 



Infill in Bone: Porous Structures 
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Can we apply the principle of bone to 3D printing? 

40 



Topology Optimization Applied to Design Infill 

Infill in the bone Topology optimization 

No similarity in structure 
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Topology Optimization Applied to Design Infill 

• Materials accumulate to “important” regions 

• The total volume  𝜌𝑖𝑣𝑖𝑖 ≤ 𝑉0 does not restrict local material 

distribution 

Infill in the bone Infill by standard 

topology optimization 
42 



Bone-like Infill in 2D 

 

Cross-section of a human femur 

43 



Approaching Bone-like Structures: The Idea 

• Impose local constraints to avoid fully solid regions 

Min:  c =
1

2
𝑈𝑇𝐾𝑈 

s.t. :  𝐾𝑈 = 𝐹 

 𝜌𝑖 ∈ [0,1], ∀𝑖 

  𝜌𝑖𝑖 ≤ 𝑉0 

 𝜌𝑖 ≤ 𝛼, ∀𝑖 

𝜌𝑖 =
 𝑗∈𝛺𝑖

𝜌𝑗

 𝑗∈𝛺𝑖
1

 

Local-volume measure 

𝛺𝑖  

𝜌𝑖 = 0.0 

𝜌𝑖 = 0.6 

𝜌𝑖 = 1.0 
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Constraints Aggregation (Reduce the Number of Constraints) 

𝜌𝑖 ≤ 𝛼, ∀𝑖 max
𝑖=1,…,𝑛

𝜌𝑖 ≤ 𝛼  lim
𝑝→∞

𝜌 𝑝 =  𝜌𝑖 
𝑝

𝑖

1

𝑝 ≤ 𝛼 

Too many constraints! A single constraint 
But non-differentiable 

A single constraint 
and differentiable 
Approximated with 𝑝 =16 
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Optimization Process: The same as in the standard topopt 

• Impose local constraints to avoid fully solid regions 

Min:  c =
1

2
𝑈𝑇𝐾𝑈 

s.t. :  𝐾𝑈 = 𝐹 

 𝜌𝑖 ∈ [0,1], ∀𝑖 

  𝜌𝑖𝑖 ≤ 𝑉0 

 𝜌𝑖 ≤ 𝛼, ∀𝑖 

𝜌𝑖 =
 𝑗∈𝛺𝑖

𝜌𝑗

 𝑗∈𝛺𝑖
1

 

Local-volume measure 

𝛺𝑖  
46 

Compute 

displacement 

(KU=F) 

Sensitivity 

analysis 

Update 𝜌𝑖 

Converged? 
No 

Yes 



A Test Example 
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Effects of Filter Radius and Local Volume Upper Bound 

 

𝛼, 𝑐 = (0.6, 76.9) (0.5, 96.0) 0.4, 130.0  

(0.6, 73.9) (0.5, 91.2) 0.4, 119.8  

R=6 

R=12 
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2D Animations 



• Porous structures are significantly stiffer (126%) in case of force variations 

Robustness wrt. Force Variations 

c = 30.54 c = 36.72 
c’= 45.83 c’ =36.23 

Local volume constraints Total volume constraint 
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• Porous structures are significantly stiffer (180%) in case of material deficiency 

Robustness wrt. Material Deficiency 

Local volume constraints 

c = 93.48 c = 76.83 

Total volume constraint 

c’= 134.84 c’ =242.77 
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Bone-like Infill in 3D 

Optimized bone-like infill Infill in the bone 

Wu et al., TVCG’2017 
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FDM Prints 
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Chair 
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Video 
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Geometric feature control by density filters 

(An incomplete list) 

 

Minimum feature size, Guest’04 Coating structure, Clausen’15 

Self-supporting design, Langelaar’16 Porous infill, Wu’16 

Reference 
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Concurrent Shell-Infill Optimization 

Wu et al., CMAME 2017 
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Outline 

• Basics of Topology Optimization 

 

• Topology Optimization for Additive Manufacturing 

– Geometric feature control by density filters 

– Geometric feature control by alternative parameterizations 
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Geometric feature control by alternative parameterizations 

(An incomplete list) 

 

Offset surfaces, Musialski’15 

1 1 1 1 
1 1 1 1 1 

1 1 1 1 1 
1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 
1 1 1 1 1 

1 1 1 1 

Reference: Voxel discretization 

Ray representation, Wu’16 

Skin-frame, Wang’13 

Voxel, Prévost’13 

Adaptive rhombic, Wu’16 

Voronoi cells, Lu’14 
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Overhang in Additive Manufacturing 

• Support structures are needed beneath overhang surfaces 

http://www.sd3d.com/portfolio/o-orientation-of-print/ 

https://www.protolabs.com/blog/tag/direct-
metal-laser-sintering/ 61 



Support Structures in Cavities 

• Post-processing of inner supports is problematic 

Print 

direction 

Inner supports 

Outer supports 
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Infill & Optimization Shall Integrate 

 

Solid,  

Unbalanced 

Optimized,  

Balanced 

With infill,  

Unbalanced 
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The Idea 

• Rhombic cell: to ensure self-supporting 

• Adaptive subdivision: as design variable in optimization 

Print 

direction 

Adaptive subdivision Rhombic cell 
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Self-Supporting Rhombic Infill: Workflow 

0.4X 

Initialization 

Optimization 

65 

Compute 

displacement 

(KU=F) 

Sensitivity 

analysis 

Update 

subdivision 

Converged? 
No 

Yes 



Self-Supporting Rhombic Infill: Results 

• Optimized mechanical properties, compared to regular infill 

• No additional inner supports needed 

Optimization process Reference Print 

Wu et al., CAD’2016 
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Mechanical Tests 

 

Under same force (62 N) Under same displacement (3.0 mm) 

Dis. 

2.11 mm 

Dis. 

4.08 mm 

Force 

90 N 

Force 

58 N 
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Bone-inspired infill Self-supporting infill 

Outline 

• Basics of Topology Optimization 

• Topology Optimization for Additive Manufacturing 

– Geometric feature control by density filters 

– Geometric feature control by alternative parameterizations 
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Topology Optimization 

• Lightweight 

• Free-form shape 

• Customization 

• Mechanically optimized 

Additive Manufacturing 

• Customization 

• Geometric complexity 
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Thank you for your attention! 

Jun Wu 
Depart. of Design Engineering, TU Delft 

www.jun-wu.net 

j.wu-1@tudelft.nl 

 

 


