Visual Analytics of the Machine Learning Process

Mengchen Liu, Tsinghua University Supervisor: Shixia Liu

FACE⁺⁺ Machine learning is hot

Machine Learning is Hard

- A large amount of data is needed
 - MSCOCO: 330K images
- Machine learning models are often treated as "black boxes"
 - Dozens of layers, millions of parameters
- Successful training a machine learning model needs time, skill.
 - Trial-and-error
 - Single trial
 - AlphaGo (2016): 1 week on 50 GPUs using Google Cloud

Deep Learning. Goodfellow et al., Pattern Classification. Duda et al.

Deep Learning. Goodfellow et al., Pattern Classification. Duda et al.

Analyzing the Training Processes of Deep Generative Networks

Mengchen Liu, Jiaxin Shi, Kelei Cao, Jun Zhu, Shixia Liu

TVCG 2018

Deep Generative Model (DGM) ξ02 Smiling face p(X) Ζ Ζ Deep neural network Χ Χ Unsupervised / Supervised semi-supervised

By generative adversarial network (GAN)

Training a DGM is Hard

- DGM: both deterministic functions and random variables (x, z)
 - Convolutional neural network (CNN): deterministic functions (e.g., convolution and pooling)
- DGM: a top-down generative process and a bottom-up Bayesian inference process
 - CNN: a bottom-up process: input at the bottom layer → high-level features → outputs

Visualization

Random variables

Challenge 1

- Handle a large amount of time series data
 - Typical time series data: activation/gradient/weight changes over time
 - Millions of activations/gradients/weights in a DGM

Contribution 1

- Handle a large amount of time series data
 - Activation/gradient/weight changes over time
 - Millions of activations/gradients/weights in a DGM
- Line chart + blue noise polyline sampling algorithm
 - Each time series as a polyline
 - Select polyline samples with blue-noise properties
 - Preserve outliers and reduce visual clutter

Challenge 2

- Identify the root cause of a failed training process
 - It's often difficult to locate the specific neurons leading to the training failure
 - Neurons influence each other

Contribution 2

- Identify the root cause of a failed training process
 - It's often difficult to locate the specific neurons leading to the training failure
 - Neurons influence each other

• A credit assignment algorithm

• Explain how other neurons contribute to the output of the neuron causing a training problem

DGMTracker

• Better understand and diagnose the training process of a DGM

Case Study: Debugging a Failed Training Process of a Variational Autoencoder (VAE)

- Autoencoder
 - Reconstruct their input with minimum information loss

- Variational autoencoder
 - Probabilistic version of an autoencoder
 - zv : a vector of random variables
 - za : a vector of real numbers

Dataset: CIFAR10 dataset Loss = NaN (10k-30k iterations) An example case: fails at 24,397

✓—bits

input

variance2/output

Data Flow: Output ~

Solution

• Trial 1: with **see**, but the network failed again Replacing • By the same analysis, we find another "bad" image • Trial 2: Much smoother Variance exp(x) Large variance \rightarrow large samples \rightarrow large increase in loss y = exp(x)y=x Log variance riance

Data Flow: Output ~

DGMTracker

Snapshot-Level Visualization

• How data flows through a network

DAG visualization for DGM structure Line chart for representing data flow

Neuron Level Visualization

- Computing and presenting how other neurons contribute to the output of the neuron being explored
 - Forward contribution: based on Layer-wise Relevance Propagation (LRP)
 - Backward contribution: based on backpropagation (BP)

Neuron Level Visualization

 Computing and presenting how other neurons contribute to the output of the neuron being explored

DGMTracker

Training Dynamics Analysis

- Employ a line chart to visually convey the training dynamics
 - Training dynamics: activation/gradient/weight changes over time
- Challenge
 - Visual clutter caused by a large amount of time series data

• Both reduce visual clutter and preserve outliers

Blue Noise Sampling

- The selected samples have blue-noise properties
 - The selected samples are located randomly and uniformly in the space
- Compared with traditional random sampling
 - Low sampling rate in the high-density regions
 - Reduce visual clutter
 - High sampling rate in the low-density regions
 - Preserve outliers

Blue noise sampling example

Blue-Noise Polyline Sampling

- State-of-the-art: blue-noise line segment sampling [Sun et al., 2013]
 - Sample a line segment → if the distance with others is large enough, accept, or reject
- Intuitive method
 - Selecting line segment samples with blue-noise properties
 - Selecting polylines that contain the selected line segments as samples
- Solution: select "complete" polylines
 - How to select a polyline sample
 - How to compute the distance between two polylines

Blue-Noise Polyline Sampling (cont'd)

- How to select a polyline sample
 - Solution: select the polyline that can make the samples the most balanced in direction
- How to compute the distance between two polylines
 - Solution: sum of distances between corresponding line segments

$$d(L_1, L_2) = \frac{1}{N_S} \sum_{i=1}^{N_S} d_C(s_1^i, s_2^i)$$

Without sampling

Random sampling

Blue-noise polyline sampling

Generalization

- DGMTracker can be directly extended to other models, such as CNNs and MLPs
 - Often a base component of a DGM

Multiplayer perceptrons (MLPs)

Convolutional neural networks (CNNs)

Conclusion and Future Work

- We have developed a visual analytics tool, DGMTracker, to facilitate machine learning experts in better understanding and diagnosing DGMs.
- Future work
 - Offline analysis \rightarrow online analysis
 - Employ pattern mining techniques to disclose interesting patterns
 - Further reduce the amount of data needed for analysis: information theory
 - Originally 6TB \rightarrow currently 6GB

Deep Learning. Goodfellow et al., Pattern Classification. Duda et al.

Towards Better Analysis of Deep Convolutional Neural Networks

Mengchen Liu, Jiaxin Shi, Zhen Li, Chongxuan Li, Jun Zhu, Shixia Liu TVCG 2017

Challenges DeepMind challenge match One key factor: two deep CNNs

Alpha

Nature match

Beats

May 2017

Policy network Value network

Boats

do the neticakee(19po)rks work?

Fan Hui (2p)

Challenges

- The size of a CNN is large
 - Tens or hundreds of layers (depth)
 - Thousands of neurons in each layer (width)
 - Millions of connections between neurons
- Many functional components
 - Their values and roles are not well understood

Contributions

• CNNVis

- Understanding
- Diagnosis
- Refinement

Hybrid visualization

- Rectangle packing
- Matrix visualization
- Biclustering-based edge
 bundling

Average Gradien

CNNVis Overview

MainWindow

D.

MainWindow

Case Study: Understanding

Network: BaseCNN (Inspired by VGG)

- Dataset: CIFAR10
- Performance: 11.33% error rate

Dubugging Information: Average Gradient Average Relative Change of Weights – 0 ×

Ľ	MainWindow

K

Color Coding		
Weights of Edges		
Gradients		
Relative Change of Weights		
Show Outlier Edge	Layers Aggregated	✓
Neuron Clusters		
BiCluster Filter		
Positive Edge Filter		
Negative Edge Filter		
Edge Opacity		
Edge Filter	-	
Neuron Facet	Learned Features	v
Neuron Size Coding	Max Activation	~
Edge Color Coding	Weight	×
Neuron Clustering	Kmeans	v
BiClustering Method	SlowBiclustering	~

ß

Dubugging Information: Average Gradient Average Relative Change of Weights

Network Depth

K

Color Coding		
Weights of Edges		
Gradients		
Relative Change of Weights		
Show Outlier Edge	Layers Aggregated	✓
Neuron Clusters		
BiCluster Filter		
Positive Edge Filter		
Negative Edge Filter		
Edge Opacity		
Edge Filter		
Neuron Facet	Learned Features	v
Neuron Size Coding	Max Activation	~
Edge Color Coding	Weight	~
Neuron Clustering	Kmeans	v
BiClustering Method	SlowBiclustering	Ŷ

Dubugging Information: Average Gradient Average Relative Change of Weights

3

MainWindow		
CIFAR10	DeepCNN	

Color Coding	
Weights of Edges	
Gradients	
Relative Change of Weights	
Show Outlier Edge	☐ Layers Aggregated ☑
Neuron Clusters	
BiCluster Filter	
Positive Edge Filter	
Negative Edge Filter	
Edge Opacity	
Edge Filter	-
Neuron Facet	Learned Features 🗸 🗸
Neuron Size Coding	Max Activation v
Edge Color Coding	Weight v
Neuron Clustering	Kmeans ~
BiClustering Method	SlowBiclustering v

5

K

Network Width

	Error	#Params	Training loss	Testing loss	
BaseCNN×4	12.33%	4.22M	0.04	0.51	Overfitting
BaseCNN×2	11.47%	2.11M	0.07	0.43	
BaseCNN	11.33%	1.05M	0.16	0.40	
BaseCNN×0.5	12.61%	0.53M	0.34	0.40	
BaseCNN×0.25	17.39%	0.26M	0.65	0.53	Underfitting

Weights of Edges		
Gradients		
Relative Change of Weights		
Show Outlier Edge	Layers Aggregated	\checkmark
Neuron Clusters		
BiCluster Filter		
Positive Edge Filter		
Negative Edge Filter		
Edge Opacity		
Edge Filter		
Neuron Facet	Learned Features	Ŷ
Neuron Size Coding	Max Activation	~
Edge Color Coding	Weight	~
Neuron Clustering	Kmeans	v
BiClustering Method	SlowBiclustering	v

 \square

MainWindow

CIFAR10 BaseCNNx0.25

Color Coding

– 0 ×

MainMindaw	
wainwindow	

CIFAR10 E	aseCNNx4
-----------	----------

Layers Aggregated 🗹
Learned Features v
Max Activation v
Weight v
Kmeans v
SlowBiclustering v

Case Study: Training Diagnosis

• Network:

- Hinge loss
 Loss function: measure the difference between output and true labels
- Training stuck at loss=2.0 (far from achieving good accuracy)

	MainWindow		- U ×
cifar10 !	je7_4	Color Coding	
		Weights of Edges	
		Gradients	
		Relative Change of Weights	
		Show Outlier Edge	Layers Aggregated 🔽
		Neuron Clusters	
		BiCluster Filter	
		Positive Edge Filter	
		Negative Edge Filter	
/		Edge Opacity	
		Edge Filter	-
1		Neuron Facet	Learned Features ~
		Neuron Size Coding	Max Activation v
		Edge Color Coding	Weight v
		Neuron Clustering	Kmeans ~
		BiClustering Method	SlowBiclustering v

Dubugging Information:

Average Gradient
Average Relative
Change of Weights

Dubugging Information:

Average Gradient
Average Relative
Change of Weights

Dubugging Information:

Average Gradient Average Relative Change of Weights

Average Relative Change of Weights

Discussion

- CNNVis cannot visualize deep models that cannot be formulated as DAGs
 - RNNs
- The scalability of activation matrix is limited
 - Number of columns = Number of classes
- There is a learning curve associated with the system
 - Neuron cluster and neuron

Future Work

- Provide an integrated system
 - End-to-end development

- Interactive feature selection
 - Manual feature construction / selection is still needed (tabular data)

Name	Thread pitch (mm)	Minor diameter tolerance	Nominal diameter (mm)	Head shape	Price for 50 screws	Available at factory outlet?	Number in stock	Flat or Phillips head?
M4	0.7	4g	4	Pan	\$10.08	Yes	276	Flat
M5	0.8	4g	5	Round	\$13.89	Yes	183	Both
M6	1	5g	6	Button	\$10.42	Yes	1043	Flat
M8	1.25	5g	8	Pan	\$11.98	No	298	Phillips
M10	1.5	6g	10	Round	\$16.74	Yes	488	Phillips
M12	1.75	7g	12	Pan	\$18.26	No	998	Flat
M14	2	7g	14	Round	\$21.19	No	235	Phillips
M16	2	8g	16	Button	\$23.57	Yes	292	Both
M18	2.1	8g	18	Button	\$25.87	No	664	Both
M20	2.4	8g	20	Pan	\$29.09	Yes	486	Both
M24	2.55	9g	24	Round	\$33.01	Yes	982	Phillips
M28	2.7	10g	28	Button	\$35.66	No	1067	Phillips
M36	3.2	12g	36	Pan	\$41.32	No	434	Both
M50	4.5	15g	50	Pan	\$44.72	No	740	Flat

Thank You!

Q & A