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breakfast start work

Use Case: Human Activities Analysis

wake up
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browse products checkout

Use Case: Website Click Streams Analysis

log in

Understand customer behavior
Adjust UI design & improve customer experience
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Use Case: Car Faults Analysis

A

08-20 10:00
Car battery low 

B

08-21 12:30 GPS 
inoperative 
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08-22 12:30 
Short circuit 
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Repair / maintenance  

X t

�Car modules like ECUs (electronic control 
units) / sensors emits fault signals like 
DTCs (diagnostics trouble codes) during 
operation.

� Fault data is archived for most car brands.
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Use Case: Car Faults Analysis
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�What are the typical development paths 
of faults? (Identify sequential patterns )

�Do cars matched to the same pattern 
come from the same country? (correlation 
analysis)

Insights support predictive 
diagnostics (i.e. identify faults likely to 
happen in the future).
Better driving experience & warranty cost 
saving.
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Plotting Raw Data

259 sequences & 2500 events in total Difficult to identify sequential patterns
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Aggregation and Interaction

EventFlow 
Monroe et. al. 2013 

Outflow
Wongsuphasawat and Gotz, 2015 

Provide succinct overview of sequences

Not robust to noisy data
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Visual Summary through Sequential Pattern Mining / Clustering
� Sequence Clustering

Visual cluster exploration, 
Wei et. al. 2012 

Unsupervised clickstream 
clustering, Wang et. al. 2016

Frequence, Perer 
and Wang, 2014 

Patterns&Sequences, 
Liu et. al. 2016 

Peekquence, Kwon 
et. al. 2016 

� Sequential Pattern Mining

Interpretation of clusters: How to 
characterize each sequence cluster

Robust to noisy data

Interpretable algorithmic parameters 
and results
Large number of patterns: Need to 
be pruned based on heuristics 
Does not consider missing eventsWe need to have an interpretable, noise tolerant, 

principled approach for event sequence 
summarization.



OUR APPROACH



�Two-part representation of event sequences 
as lossless compression of the data

�Optimal pattern set selection for visual 
summary based on the Minimum Description 
Length (MDL) principle

� Optimization algorithm

� Speedup with locality sensitive hashing

Our Approach – Sequence Synopsis
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Overview
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Two-Part Representation of Event Sequences

Representative pattern 
summarizes multiple sequences.
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Two-Part Representation of Event Sequences
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Corrections - event insertions 
(edits) recover the original 
sequences from the pattern.

Use sequential patterns for visual summary.
Model information loss with the required edits  
(corrections).

Representative pattern 
summarizes multiple sequences.
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Two-Part Representation of Event Sequences
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Event deletion is another possible 
type of edit.

Representative pattern 
summarizes multiple sequences.

Different types of edits allow different variations 
from the pattern. Enable noise tolerant & 
robust pattern matching.
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Two-Part Representation of Event Sequences

What can be considered as a good set of patterns 
to summarize a collection of event sequences?

Patterns Edits (Corrections)Event Sequences = +



Our Approach – Sequence Synopsis
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The Minimum Description Length (MDL) Principle

Model description length  Data description length 
with the help of the model  

�Widely used information-theoretic criteria for 
model selection

� Introduced by Jorma Rissanen in 1978
�Formalizes “Occam’s Razor”

�The best model (or hypothesis) of a data set should minimize its total description 
length:
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Description Length of Event Sequences

7 6

Trade-off between reducing visual complexity & minimizing information loss.

L = L(M) + L(D|M)

sum(lengths of patterns)
# min edits (corrections)
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Optimize Description Length for the Best Set of Patterns

�Basic Idea: iteratively find & merge two groups of sequences with maximum description 
length reduction

�How to calculate description length reduction?
� Find representative sequence for the merged group
�Calculate the minimum number of edits (insertion, deletion, swapping event positions) 

needed to transform the representative sequence to the  individual sequence in the 
merged group
‒ Assuming insertion & deletion are allowed. Longest common subsequence (LCS) algorithm 

can be applied to calculate min #edits
�Sum up the description length
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Optimize Description Length for Best Set of Patterns

�Basic Idea: iteratively find & merge two groups of sequences with maximum description 
length reduction
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Optimize Description Length for Best Set of Patterns

�Basic Idea: iteratively find & merge two groups of sequences with maximum description 
length reduction

Try to merge each pair of sequences/patterns

-4
Calculate description length reduction



Our Approach – Sequence Synopsis

Research and Technology Center North America | CR/RTC1.4-NA | 8/25/2017
© 2017 Robert Bosch LLC and affiliates. All rights reserved.

18

Optimize Description Length for Best Set of Patterns

�Basic Idea: iteratively find & merge two groups of sequences with maximum description 
length reduction

Try to merge each pair of sequences/patterns

-2

Calculate description length reduction
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Optimize Description Length for Best Set of Patterns

�Basic Idea: iteratively find & merge two groups of sequences with maximum description 
length reduction

-4

Merge the pair with maximum description 
length reduction
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Optimize Description Length for Best Set of Patterns

�Basic Idea: iteratively find & merge two groups of sequences with maximum description 
length reduction

…

-4
-4

Need to perform pairwise comparison at each iteration
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Algorithm Speedup through Locality Sensitive Hashing (LSH)

�Bottleneck of the approach: find best pair of event sequence groups to merge
�Locality sensitive hashing: algorithm for fast approximate neighbor search
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Algorithm Speedup through Locality Sensitive Hashing (LSH)

�Bottleneck of the approach: find best pair of event sequence groups to merge
�Locality sensitive hashing: algorithm for fast approximate neighbor search

Simplified similarity measure with set relation
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Algorithm Speedup through Locality Sensitive Hashing (LSH)

�Bottleneck of the approach: find best pair of event sequence groups to merge
�Locality sensitive hashing: algorithm for fast approximate neighbor search
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Algorithm Speedup through Locality Sensitive Hashing (LSH)

�Bottleneck of the approach: find best pair of event sequence groups to merge
�Locality sensitive hashing: algorithm for fast approximate neighbor search

20x ~ 50x speed gain
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Algorithm Speedup through Locality Sensitive Hashing (LSH)

�Bottleneck of the approach: find best pair of event sequence groups to merge
�Locality sensitive hashing: algorithm for fast approximate neighbor search
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Advantages
�Simultaneous event sequence clustering and 

pattern extraction
�Soft constraints on pattern matching, 

therefore robust to noisy data
�Generalizability: possibility to include 

different sequence editing operations (e.g. 
event insertion, deletion, swapping positions)
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Visual Design

CorrectionsPatternsOriginal Data
 Visual Design



System
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Architecture



System
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Supportive Views, UI, Case Study – Vehicle Fault Analysis
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Case Study – Application Log Analysis

�D. Fisher. Agavue event data 
sample

�~2000 user sessions
� Interaction log of using a 

data visualization application



System
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Case Study – Application Log Analysis

�D. Fisher. Agavue event data 
sample

�~2000 user sessions
� Interaction log of using a 

data visualization application

Binding data
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Comparative Experiment

EventFlow 
Monroe et. al. 2013 

Our method

�Vehicle Fault Sequence
�259 cars & 2500 events
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Contributions

�A new application domain of event sequence visualization
�A generic two-part representation of event sequences 

that:
� Quantifies visual complexity & information loss in visual 

summaries
� Combined with the MDL principle, defines an optimal set of 

patterns for summary
�An efficient algorithm to optimize visual summary using LSH
�A visual analytics system that supports interactive analysis 

of real-world event sequences from different application 
domains
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Future Work

�Revise model representation to discover multiple patterns 
in a single sequence

�Towards quantifiable visual designs by applying the 
MDL principle to different types of data: graph/networks, 
time series … 
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