Computational Design and Fabrication of Structures and Mechanisms

Peng Song 2017.12.28

3D Assembly

3D Assembly

3D Assembly: Components

• Parts

3D Assembly: Components

- Parts
- Connectors

3D Assembly: Advantages

#1 Build huge objects

3D Assembly: Advantages

#2 Easy for storage, transport

disassemble and pack

3D Assembly: Advantages

#3 Functionality (relative part motion)

3D Assembly

3D Assembly: Structure

- Task: bear load
- **DOF**: = 0
- Connector: glue, nail, screw, etc.

3D Assembly: Mechanism

- Task: transfer motion
- **DOF**: > 0
- Connector: gear, linkage, cam, etc.

Interlocking Structure

Parts are connected (i.e., interlocked) with one another using their own geometry to form a steady assembly, without using any additional connectors

Characteristics

- Parts need to be assembled following a certain order
- Parts can be repeatedly disassembled and reassembled
- No additional connector is required

Characteristics

Connection Approach			
	Friction	Glue	Screw
Stability			
Disassemblable			
Avoid connectors			

Interlocking

Applications

Related Works

Formal Definition: Interlocking Structure

An assembly is interlocking if only one movable part (key), while all other parts, as well as any subset of parts, are immobilized

[Note: these illustrations are in 2D]

Problem: Design Interlocking Structure

Given a target 3D shape, construct geometry of interlocking parts

Challenge #1 Global Interlocking

- Need to check immobilization of every single part and every subset of parts
- The complexity is 2^{K} , where K is the number of parts

Movement of a single part

Movement of a subset of parts

Challenge #2 Disassemblable

 The assembly can be progressively disassembled into a set of individual parts following a certain order

Local deadlocking

Deadlocking

Key Idea #1: Local Interlocking Groups

- Break the set of parts into multiple local groups
- Ensure local interlocking for each group \bullet
- Enforce dependency among the local interlocking groups ullet

Local interlocking

Local interlocking

Local interlocking

Key Idea #2: Motion-guided Geometry Construction

 Construct parts geometry guided by its target moving direction, which is determined when enforcing the local interlocking constraint

Four Research Projects

Interlocking Puzzle, 2012

Interlocking Furniture, 2015

Interlocking Polyhedron, 2016

Interlocking Reconfigurables, 2017

Recursive Interlocking Puzzles Song et al. SIGGRAPH Asia 2012

Computational Interlocking Furniture Assembly Fu and Song et al. SIGGRAPH 2015

CofiFab: Coarse-to-Fine Fabric. of Large 3D Objects Song et al. SIGGRAPH 2016

Reconfigurable Interlocking Furniture Song et al. SIGGRAPH Asia 2017

Mechanical Toy

Mechanical toys are toys powered by mechanical energy.

Mechanical Toy

Example Toy

Example Toy

Mechanism

End effectors

Driving source

Typical Elemental Mechanisms

An elemental mechanism delivers a fundamental motion transfer task with two or more mechanical parts

Gears

Belt and pulley

Linkage

Connect Elemental Mechanisms

A more complex mechanism can be built by connecting a number of elemental mechanisms.

Problem: Mechanism Design

Input:

- 1. Toy shape
- 2. End-effector **motions**
- 3. Library of elem. Mechanism

[Zhu et al. 2012]

Output:

Mechanism that transfers motion from driving source to end-effectors

General Approach

Related Works

[Zhu et al. 2012]

Elemental mechanisms

[Coros et al. 2013]

[Ceylan et al. 2013]

Results

Wind-up Toys

Wind-up Toys

Powered by a clockwork motor

clockwork motor

Wind-up Toys

How it Works?

wind-up motor

end-effector

body support

connectors

Our Goal

Develop a computational tool to aid the design and fabrication of wind-up toys, focusing on automated construction of the internal mechanisms

User inputs

Mechanism design

Fabrication

Preview: Our Result

Preview: Our Result

Challenge #1: Small Driving Force

Wind-up motor can only store limited energy and provide a small torque,

Hand-operated crank

[Zhu et al. 2012]

Electric drill

[Coros et al. 2013]

Challenge #1: Small Driving Force

Wind-up motor can only store limited energy and provide a small torque, thus requiring a lightweight wind-up mechanism.

[Coros et al. 2013]

Challenge #1: Small Driving Force

By this, the wind-up toy can perform motions for a longer duration.

Challenge #2: Higher Pair Joints

Wind-up toys heavily employ higher pair joints to transfer motion; Higher pair joints: point or line contact between assoc

Less friction **Higher Flexibility**

Challenge #2: Higher Pair Joints

Wind-up toys heavily employ higher pair joints to transfer motion, which has not been fully explored in previous works.

[Ceylan et al. 2013]

Linkages

[Thomaszewski et al. 2014]

Challenge #3: Compact Mechanism

Wind-up mechanism should be enclosed inside the small toy body,

Challenge #3: Compact Mechanism

Wind-up mechanism should be enclosed inside the small toy body, thus calling for a compact wind-up mechanism

Key Idea #1: Model Elemental Mechanisms

Model elemental mechanisms with higher pair joints as building blocks

Key Idea #2: Connect Elemental Mechanisms

Construct a wind-up mechanism by connecting multiple elem. mechanisms

Key Idea #3: Optimize Wind-up Mechanisms

Optimize topology and geometry of wind-up mechanisms

Input #1 Toy parts

ion	Symbol
(R)	C
(O)	
ו (T)	+
g & (OT))

Input #3 Motor Pose

Input #3 Motor Pose

Model Elemental Mechanisms (eleMechs)

- Each eleMech has a driver, a follower, and supporter(s)
- Categorize eleMechs into four groups: R, O, T, and OT

Model Elemental Mechanisms: Geometry

• Parameters of joints layout

Model Elemental Mechanisms: Geometry

- Parameters of joints layout •
- Parameters of joints geometry

Model Elemental Mechanisms: Geometry

- Parameters of joints layout •
- Parameters of joints •
- Parameters for fabrication

Thickness

Boundary

Tolerance

Model Elemental Mechanisms: Kinematics

Given driver's pose at time t, compute follower's pose from the joints parameters

$$Y = \frac{D_y}{\cos \theta} + D_x \tan \theta$$

Model Elemental Mechanisms: Connection

Condition: motion type of parent eleMech's follower should be the same as that of child eleMech's driver

Overview

Conceptual Design

Given user inputs and eleMech table, this stage addresses two questions: 1) Which eleMechs should be selected? 2) How these eleMechs should be connected?

\mathbf{R}_z to \mathbf{O}_y : 14 chains $\left(\mathbf{R}_{z}\right)$ $(\mathbf{R}_z)(\mathbf{R}_z)$ $\left(\frac{\mathbf{R}_{z}}{\mathbf{R}_{z}} \right)$ $(\mathbf{R}_z)(\mathbf{R}_z)$ $(\mathbf{R}_z)(\mathbf{R}_z)$ (\mathbf{R}_{z}) (\mathbf{R}_{z}) $\left(\mathbf{R}_{z} \right)$ (\mathbf{R}_{z}) $\left(\frac{\mathbf{R}_{z}}{\mathbf{R}_{z}} \right)$ (\mathbf{R}_{z}) $(\mathbf{O}_z)(\mathbf{O}_z)(\mathbf{O}_z)$ (\mathbf{O}_z) (\mathbf{T}_{x}) (\mathbf{T}_{y}) $(\mathbf{O}_z \mathbf{T}) (\mathbf{O}_z \mathbf{T})$ (\mathbf{O}_z) (\mathbf{T}_{x}) (\mathbf{T}_{v}) $\mathbf{O}_{z}\mathbf{T}$ (\mathbf{T}_{x}) $\left(\mathbf{T}_{y}\right)$ $\left(\mathbf{T}_{y} \right)^{-1}$ $(\mathbf{O}_{y})(\mathbf{O}_{z})(\mathbf{T}_{x})$ (\mathbf{O}_{x}) $\mathbf{O}_{\mathbf{y}}$ $\mathbf{O}_{\mathbf{z}}$ $(\mathbf{O}_x) (\mathbf{O}_y)$ (\mathbf{O}_z) (\mathbf{O}_z) (\mathbf{O}_{x}) (\mathbf{T}_{x}) (**T**, (\mathbf{O}_{y}) (\mathbf{O}_{y}) $\left(\mathbf{O}_{y}\right)\left(\mathbf{O}_{y}\right)$ (\mathbf{O}_{v}) $(\mathbf{O}_{y})(\mathbf{O}_{y})$ $(\mathbf{O}_{v}$ (\mathbf{O}_{y}) (\mathbf{O}_y) (\mathbf{O}_{v})

\mathbf{R}_z to \mathbf{O}_v : 14 chains \mathbf{R}_{z} \mathbf{R}_{z} $(\mathbf{R}_z)(\mathbf{R}_z)$ $(\mathbf{R}_z)(\mathbf{R}_z)(\mathbf{R}_z)$ (\mathbf{R}_{z}) (\mathbf{R}_{z}) (\mathbf{R}_{z}) (\mathbf{R}_{z}) $\left(\mathbf{R}_{z}\right)$ (\mathbf{R}_{z}) (**T**_y) , (\mathbf{T}_{y}) $(\mathbf{O}_z)(\mathbf{O}_z)(\mathbf{O}_z)(\mathbf{O}_z)$ $(\mathbf{T}_{\mathbf{x}})(\mathbf{T}_{\mathbf{x}})$ (\mathbf{T}_{y}) $\mathbf{O}_{z}\mathbf{T}$ $(\mathbf{O}_z \mathbf{T}) (\mathbf{O}_z \mathbf{T})$ (\mathbf{O}_z) (\mathbf{T}_{x}) $(\mathbf{O}_{x}) (\mathbf{O}_{y}) (\mathbf{O}_{z})$ $(\mathbf{O}_{\mathbf{y}})(\mathbf{O}_{\mathbf{z}})(\mathbf{T}_{\mathbf{x}})(\mathbf{T}_{\mathbf{y}})$ $(\mathbf{O}_{x}) (\mathbf{O}_{y})$ (\mathbf{O}_z) (\mathbf{O}_{z}) (\mathbf{T}_{x}) $(\mathbf{O}_{\mathsf{x}})$ (\mathbf{T}_{v}) (O_v) $\mathbf{O}_{\mathbf{y}} \left(\mathbf{O}_{\mathbf{y}} \right) \left(\mathbf{O}_{\mathbf{y}} \right)$ (\mathbf{O}_{y}) $(\mathbf{O}_{\mathbf{v}})(\mathbf{O}_{\mathbf{v}})$ (\mathbf{O}_{v}) (\mathbf{O}_{v}) (\mathbf{O}_{y}) (\mathbf{O}_{v})

 \mathbf{R}_{z} to \mathbf{O}_{x} : 17 chains $(\mathbf{R}_{z})(\mathbf{R$ (\mathbf{R}_{z}) $\left(\mathbf{R}_{z}\right)$ $(\mathbf{O}_z)(\mathbf{O}_z)(\mathbf{O}_z)(\mathbf{O}_z)(\mathbf{O}_z)(\mathbf{T}_x)(\mathbf{T}_x)(\mathbf{T}_x)(\mathbf{T}_x)$ $(\mathbf{T}_{y})(\mathbf{T}_{y})$ $(\mathbf{T}_{y}) (\mathbf{O}_{z}) (\mathbf{O}_{z}) (\mathbf{O}_{z})$ (\mathbf{T}_{y}) (\mathbf{O}_z) $\mathbf{O}_{\mathbf{x}} (\mathbf{O}_{\mathbf{x}}) (\mathbf{O}_{\mathbf{y}}) (\mathbf{O}_{\mathbf{z}}) (\mathbf{O}_{\mathbf{z}}) (\mathbf{T}_{\mathbf{x}})$ $(\mathbf{O}_{x},\mathbf{O}_{y},\mathbf{O}_{z},\mathbf{T}_{x},\mathbf{T}_{y},\mathbf{O}_{x},\mathbf{O}_{y},\mathbf{O}_{z})$ (\mathbf{O}_{x}) $(\mathbf{O}_{x}) (\mathbf{O}_{x}) (\mathbf{O}_{x}) (\mathbf{O}_{x}) (\mathbf{O}_{x})$ $(\mathbf{O}_x)(\mathbf{O}_x)(\mathbf{O}_x)(\mathbf{O}_x)(\mathbf{O}_x)$ (\mathbf{O}_{x}) (\mathbf{O}_{x}) $(\mathbf{O}_{\mathbf{x}})$ $(\mathbf{O}_{\mathbf{x}})$

\mathbf{R}_z to \mathbf{O}_v : 14 chains \mathbf{R}_{z} \mathbf{R}_{z} $(\mathbf{R}_z)(\mathbf{R}_z)$ $(\mathbf{R}_z)(\mathbf{R}_z)(\mathbf{R}_z)$ (\mathbf{R}_{z}) (\mathbf{R}_{z}) (\mathbf{R}_{z}) $\left(\mathbf{R}_{z}\right)$ (\mathbf{R}_{z}) $\left(\mathbf{R}_{z} \right)$ (**T**_y) , $(\mathbf{O}_z)(\mathbf{O}_z)(\mathbf{O}_z)(\mathbf{O}_z)$ $(\mathbf{T}_{\mathbf{x}})(\mathbf{T}_{\mathbf{x}})$ (\mathbf{T}_{y}) (\mathbf{T}_{y}) $\mathbf{O}_{z}\mathbf{T}$ $(\mathbf{O}_z \mathbf{T}) (\mathbf{O}_z \mathbf{T})$ (\mathbf{O}_z) (\mathbf{T}_{x}) $(\mathbf{O}_{x}) (\mathbf{O}_{y}) (\mathbf{O}_{z})$ $(\mathbf{O}_{\mathbf{y}})(\mathbf{O}_{\mathbf{z}})(\mathbf{T}_{\mathbf{x}})(\mathbf{T}_{\mathbf{y}})$ $(\mathbf{O}_{x}) (\mathbf{O}_{y})$ (\mathbf{O}_{z}) $(\mathbf{O}_{\mathsf{x}})$ (\mathbf{T}_{x}) (\mathbf{T}_{v}) (O_y) $\mathbf{O}_{\mathbf{y}} \left(\mathbf{O}_{\mathbf{y}} \right) \left(\mathbf{O}_{\mathbf{y}} \right)$ (\mathbf{O}_{y}) $(\mathbf{O}_{\mathbf{v}})(\mathbf{O}_{\mathbf{v}})$ (\mathbf{O}_{v}) (\mathbf{O}_{v}) (\mathbf{O}_{y}) (\mathbf{O}_{v})

 \mathbf{R}_{z} to \mathbf{O}_{x} : 17 chains $(\mathbf{R}_{z})(\mathbf{R$ (\mathbf{R}_{z}) $\left(\mathbf{R}_{z}\right)$ $(\mathbf{O}_z)(\mathbf{O}_z)(\mathbf{O}_z)(\mathbf{O}_z)(\mathbf{O}_z)(\mathbf{T}_x)(\mathbf{T}_x)(\mathbf{T}_x)(\mathbf{T}_x)$ $(\mathbf{T}_{y})(\mathbf{T}_{y})$ (\mathbf{T}_{y}) $(\mathbf{T}_{y}) (\mathbf{O}_{z} \mathbf{I}) (\mathbf{O}_{z} \mathbf{I}) (\mathbf{O}_{z} \mathbf{I})$ (\mathbf{O}_z) $(\mathbf{O}_{x},\mathbf{O}_{y},\mathbf{O}_{z},\mathbf{T}_{x},\mathbf{T}_{y},\mathbf{O}_{x},\mathbf{O}_{y},\mathbf{O}_{z})$ $\mathbf{O}_{\mathbf{x}} (\mathbf{O}_{\mathbf{x}}) (\mathbf{O}_{\mathbf{y}}) (\mathbf{O}_{\mathbf{z}}) (\mathbf{O}_{\mathbf{z}}) (\mathbf{T}_{\mathbf{x}})$ (\mathbf{O}_{x}) $(\mathbf{O}_{x}) (\mathbf{O}_{x}) (\mathbf{O}_{x}) (\mathbf{O}_{x}) (\mathbf{O}_{x})$ $(\mathbf{O}_x)(\mathbf{O}_x)(\mathbf{O}_x)(\mathbf{O}_x)(\mathbf{O}_x)$ (\mathbf{O}_{x}) (\mathbf{O}_{x}) $(\mathbf{O}_{\mathbf{x}})$ (**O**,

Overview

Overview

Optimize Mechanism: Search Space

Parameters that define a configuration of the wind-up mechanism

- 1) motor's pose in the toy space
- 2) joint layout parameters

Optimize Mechanism: Formulation

Minimize

total volume of the parts $F(g) = \omega_1 F_1(g)$

lightweight

the maximum signed distance between joints and the body shell

compact

 $+\omega_{3}F_{3}(q)$

 $+\omega_{4}F_{4}(q)$

 $+\omega_2 F_2(g)$

measure motion similarity (motion axis)

motion

measure motion similarity (motion range)

Coarse Optimization

Goal: 1) compact the mechanism;

2) make each end-effector part close to its target location

Coarse Optimization

Goal: 1) compact the mechanism;

2) make each end-effector part close to its target location

Fine Optimization

Goal: minimize the whole objective function, particularly for better matching user prescribed end effector motions.

Fine Optimization

Refine boundary shape of mechanical parts

Fine Optimization

Refine boundary shape of mechanical parts

Final Result

Results

Results: Bunny

13.0g shell7.8g motor9.0g mech.

Results: Horse

15.3g shell5.9g motor26.1g mech.

Results: Flower Pot

34.8g shell5.8g motor8.0g mech.

Results: House

48.9g shell6.0g motor6.4g mech.

Results: Jack O'Lantern

Results: Jack O'Lantern

Results: Minion

Results: Minion

Results: Gecko

Results: Gecko

Limitations and Future Work

- Cannot guarantee a feasible mechanism for arbitrary user inputs
- Cannot guarantee the torque/force of an existing wind-up motor is sufficient to drive our designed mechanism
- Support other kinds of locomotion besides wheeling

r inputs motor is

Reconfigurable

Structure that can be transformed into different forms, for use in different situations, e.g., by means of hinges

Reconfigurable

We may construct a common set of parts, and assemble the parts into objects of different forms.

a common set of parts

LEGO Creator

5 In 1 Soft Plastic Nuts Assembled Toy

Reconfigurable Furniture

Furniture assemblies that are reconfigurable and modular...

By T. Maitz of perludi.com

BESTÅ from IKEA

Micke from IKEA

Advantage #1 Cost-effective

Promote *reuse* of parts and increase their parts utilization

Advantage #2 Save Space

Save occupied space on usage, storage, and transportation

Non-Reconfig.

Reconfig.

Advantage #3 Extensible

Extensibility of the structure by reusing more part instances

Our Result

In SIGGRAPH 2015 (our previous work)

"Computational interlocking furniture"

In SIGGRAPH Asia 2017 (our new work)

"Reconfigurable interlocking furniture"

Related Research Areas

[Sun et al. 2015]

[Li and Hu et al. 2015]

[Garg et al. 2016]

Transformable & Reconfigurable

[Baker 1961]

2D/3D Dissection

Interlocking Assemblies

[Song et al. 2012]

Challenge #1: Reconfigurable Interlocking Furniture

Compatible Parts: for a part to be reusable, it has to fit to different designs with exactly the same dimension and shape

Furniture fit to d shape

Challenge #2: Reconfigurable Interlocking Furniture

Compatible Joints: the joints on the part should allow the part to connect different neighboring parts in different designs

Challenge #3: Reconfigurable Interlocking Furniture

Steady assembly: we should assemble the parts with interlocking, and be able to repeatedly disassemble and re-assemble them

Steady assembly based on mechanical interlocking

Starting from the input designs...

input designs

Approximate inputs by cages and identify geometric semantics

input designs

cage approx. (preprocessing)

(preprocessing)

designs

Approximate inputs by cages and identify geometric semantics

a common set of parts (without joints)

input cage approx. designs (preprocessing) co-decomposition

our key contributions

Co-decomposition: Goal

Given input designs approximated with cages,

Co-decomposition: Goal

Given input designs approximated with cages, our goal is to construct a common set of parts

Co-decomposition: Goal

Given input designs approximated with cages, our goal is to construct a common set of parts that can be reused to build the assembly structures.

Co-decomposition: Requirements

- Parts utilization: maximize the reuse of parts across designs
- Easy assembly: minimize the total number of common parts
- Design fidelity: minimize local modifications on input designs

s designs on parts t designs

Co-decomposition: Formulation

We formulate co-decomposition as an edge construction problem on dynamic bipartite graphs:

Co-decomposition: Formulation

We formulate co-decomposition as an edge construction problem on dynamic bipartite graphs:

Co-decomposition: Formulation

Objective function for the edge construction problem:

$$\max_{i,j} \sum_{s.t.} \left[\omega_1 C_1(\mathbf{S}_i, \mathbf{S}_j) - \omega_2 C_2(\mathbf{S}_i, \mathbf{S}_j) \right] + \sum_i \omega_3 C_3(\mathbf{S}_i),$$

Maximize parts reuse with $C_1(\mathbf{S}_i, \mathbf{S}_j) = |\mathbf{E}_{ij}|$, $C_{2}(\mathbf{S}_{i}, \mathbf{S}_{j}) = |\mathbf{S}_{i}| + |\mathbf{S}_{j}| - |\mathbf{E}_{ij}|, \qquad \text{Smaller common set of parts}$ and $C_{3}(\mathbf{S}_{i}) = \sum_{k} \frac{\operatorname{vol}(B_{k}^{i} \cap \bar{B}_{k}^{i})}{\operatorname{vol}(B_{k}^{i} \cup \bar{B}_{k}^{i})}, \qquad \text{Small modifications on designs}$

Operation #1: Measure Cage Similarity

- The goal is to identify similar cages for modification such that small modification can result in a correspondence
- Cage similarity measure: $\mathbb{S}(B_1, B_2) = \max_i \frac{\operatorname{vol}(B_1 \cap R_i(B_2))}{\operatorname{vol}(B_1 \cup R_i(B_2))}$

$\mathbb{S}(B_1, B_2) = 1$ indicates a correspondence

Operation #2: Resize Cages

Form cage correspondences by resizing some of them

Operation #2: Resize Cages

Form cage correspondences by resizing some of them

Operation #2: Resize Cages

Preserve geometric semantics after the cage resizing

Preserve Alignment

Operation #2: Resize Cages

Resizing a large cage to match a small one will result in significant volume change on the cage.

Operation #3: Split Cages

Thus, we first split the large cage into two smaller cages

Operation #3: Split Cages

and form a correspondence for each of the smaller cages.

Iterative Approach

- Develop an iterative approach that apply the operations with randomness
- Pick the best K results that maximize the objective function

Overview of Our Approach

Model Joint Connections

- The co-decomposition generates a common set of parts
- Yet, the parts have no joints for their physical connection

f parts nection

Model Joint Connections

Parts-graphs model only joint connections in individual designs, yet not <u>compatible joint connections</u> across multiple designs

Model Joint Connections

We develop a new data structure called half-joint graph to model these compatible joints connections.

Half Joint

Half joint is the portion of a joint on an individual part

Mortise and tenon joint

Half Joint

Identify Half Joints

Identify Half Joints

Identify Half Joints

Connect Half Joints

Connect Half Joints

Connect Half Joints

Half-Joint Graph

Formulate the Search Space

If half joints $J_{a,x}$ and $J_{b,y}$ connect parts P_a and P_b in the k-th design, we should have

$$T_{k,a} \cdot d_{a,x} = -T_{k,b} \cdot d_{b,y}$$

 $T_{k,a}$ is the transform of P_a in k-th design $d_{a,x}$ is the direction to remove P_a from its partner at $J_{a,x}$ $T_{k,a} \cdot d_{a,x}$ is P_a 's removal direction at $J_{a,x}$ in the k-th design

Ja.x

K-th design

Formulate the Search Space

The actual number of free variables depends on the number of disjoint subgraphs in the half-joint graph.

19 subgraphs

Overview of Our Approach

Forward Interlocking

[Our previous work in SIG 2015]

Backward Interlocking

Backward vs Forward Interlocking

Backward interlocking allows to

- 1) first explore <u>substructures common to all designs</u>
- 2) construct different global key(s) for different designs

Find common substructures of a given set of designs

Find common substructures of a given set of designs

Plan joints iteratively

Plan joints iteratively

Plan joints iteratively

Plan joints iteratively G4 P3 [D1] **P**4 **P**8 P5 G2 P3 [D1, D2, D3] \mathbf{D} P2 P1 G1 [D1, D2, D3, D4] +ý +χ G3 [D4] +7

Plan joints iteratively

Plan joints iteratively

Our Results

- Animation sequences showing assembly and re-assembly
- Physical fabrication: woodworking, laser cutting & 3D printing
- Extensible and hierarchical assemblies
- Baseline comparisons

ssembly 3D printing

Chair - Step Ladder

Shoe Rack - Box

Bookshelf - Table+Chairs

Office Boxes

Bookshelves

Ladder - Truck - Stool

Results

Results: Statistics

	Forms			ши	#0	#H	T-co-D.	T-co-C.
	(designs)	#P	#J	#K	#0		(sec.)	(sec.)
	Ladder	9	14	2	11	50	24.8	35.6
	Stool	11	16	3				
	Hand Truck	10	14	2				
	Step Ladder	9	14	2	9	46	0.4	0.7
	Chair	8	17	2				
	Bookshelf 1	8	12	2	8	27	2.7	1.1
	Bookshelf 2	8	12	2				
	Bookshelf 3	8	12	2				
	Bookshelf 4	8	12	2				
	Bed	8	13	1	11	44	0.6	0.5
	Cot	<mark>5</mark>	8	1				
	Desk	6	8	1				
	Bookshelf	15	22	1	16	70	275.0	493.8
	Table	6	9	1				
	Chair	5	8	1				
	Chair	5	8	1				
	Office Box 1	9	19	1	11	64	38.0	272.2
	Office Box 2	10	21	1				
	Office Box 3	10	20	1				
	Shoe Rack	9	16	2	12	60	0.5	2.3
	Laundry Box	9	16	2				

Limitations

- Co-decomposition process may fail if the given designs have very different dimensions or very different substructures
- Interlocking model requires the user to put in extra part(s) in case there are insufficient cyclic substructures
- Co-decomposition and co-construction processes are performed sequentially

Transfer motion;

Toy motions driven by mechanical energy

Toy motions driven by spring motor

Summary

More information can be found at <u>https://songpenghit.github.io</u>

Acknowledgments

Supervisors

Chi-Wing Fu Ligang Liu **Daniel Cohen-or** Niloy J. Mitra Jianmin Zheng

. . . .

Friends

Bailin Deng Xiaoqi Yan Xiaopei Liu

. . . .

Students Ziqi Wang Zhichao Dong

- Wei Li
- Xiaofei Wang
- Xiao Tang
- Hongfei Xu Zhongqi Fu

. . . .

Acknowledgments

谢谢各位讲者、老师、同学一直以来对GAMES的支持! 祝大家在新的一年身体健康、学业进步、万事如意! 2018年再见 ☺