

Neural Style Transfer for Images and Videos

Jing Liao(Visual Computing Group, MSRA)

worked with Lu Yuan, Gang Hua, Sing Bing Kang, Dongdong Chen*, Yuan Yao*, (*: interns)

Transfer the artistic style of a painting to another image?

e.g. combining an image with Vincent van Gogh's The Starry Night.

Manual simulation: "Loving Vincent" has **65,000** individual frames painted by **125** artists, took **6** years.

Automatic simulation: Traditional NPR methods.

Cartoon
[Winnemoller et al. 2006] SIGGRAPH

Oil Painting
[Zeng et al. 2009] ACM TOG

Pencil drawing
[Lu et al. 2012] NPAR

Automatic simulation: Deep neural network methods.

Success in market:

Prisma, Pikazo, Lucid, Painnt, Artisto, Icon8, DeepArt, Malevich, Ostagram

[Gatys et al. 2015], [Li & Wang 2016], [Ulyanov et al. 2016], [Johnson et al. 2016], [Dumoulin et al. 2016]

Style Transfer by Convolutional Neural Networks

[Gatys et al. 2015] argmin L(I, content, style)= $\operatorname{argmin}(\alpha L_{content} + \beta L_{style})$ High-level Low-level L2 dis between L2 dis between

features

L2 dis between Features Gram matrix

content

Style Transfer by Convolutional Neural Networks

Limitations of [Gatys et al. 2015]

- 1. Slow: requires hundreds of forward and backward passes through the CNN StyleBank [CVPR 2017]
- 2. Temporal incoherent: flickering artifacts
 Coherent Video Style Transfer [ICCV 2017]

3. Local incorrectness:

Deep Image Analogy [Siggraph 2017]

StyleBank: An Explicit Representation for Neural Image Style Transfer

CVPR 2017

Dongdong Chen, Lu Yuan, Jing Liao, Nenghai Yu, Gang Hua

Feed-forward Baseline vs. StyleBank

Coupled Content & Style:

Motivation

Texture synthesis can be considered as a convolution between *Texton* and sampling function.

Texture Synthesis in Image Space

Can this idea can be applied in deep feature space for texture/style transfer?

Texture/Style Transfer in Feature Space

• Stylizing bdan branshyle Balyk (outlynttyle)

$$L_{id} = ||O - I||^{2}$$

$$L_{perc} = \alpha L_{content} + \beta L_{style}$$

two branches share the same encoder & decoder

• "T+1" Training Strategy

T iterations for stylizing branch

• "T+1" Training Strategy

1 iterations for auto-encoder branch

• Test Strategy

1. Simultaneously learn multiple styles in one network

Reconstructed, Stylized O

[Johnson et al. 2016]: 800 hours, 1,120 Mbytes Ours: 36 hours, 120 Mbytes

Results

2. Faster training for new styles: only learn StyleBank layer

Feedforward nets [Johnson et al. 2016]: $4 \sim 5$ hours Ours: 8 mins

3. Faster synthesis in switching various styles

4. Style fusion: linear fusion of style filter banks

4. Style fusion: linear fusion of style filter banks

Coherent Online Video Style Transfer

ICCV 2017

Dongdong Chen, Jing Liao, Lu Yuan, Nenghai Yu, Gang Hua

Per-frame Method vs. Our Method

input:

per-frame [Johnson et al. 2016]

our method (online processing)

Our Idea: Propagation + Blending

flow confidence

final result (t)

Our Method:

Short-term consistency approximates long-term consistency by propagation

Comparisons

input:

per-frame [Johnson et al. 2016]

our method

Comparisons

input:

per-frame (StyleBank) [CVPR 2017]

our method (StyleBank)

Comparisons

input:

global optimization [Ruder et al. 2015]

our method

Transfer Visual Attribute Transfer through **Deep Image Analogy**

Siggraph 2017

Jing Liao

Yuan Yao Lu Yuan

Gang Hua Sing Bing Kang

Three Generations of Neural Style Transfer

Source

Reference

Global Statistics

Gatys et al. [2015]

App: Ostagram Deep Style

Fast Approximation

Johnson et al. [2016]

App: Prisma

Local Semantics

Ours

Core Problem in Style Transfer

Cross-domain matching: difficult!

Traditional Image Analogy: Hertzmann et al.[2001]

same-domain matching

Deep Image Analogy

Decouple structures and details with neural networks

Semantic Structures

Visual Details

Decouple structures and details with neural networks

B

Intermediate results

Qualitative Evaluations

> Category 1: same scene with varied views or motions

Input (src)

Input (ref)

SIFT flow

PatchMatch

DeepFlow2

Ours

Qualitative Evaluations

> Category 2: same scene with different colors or tones

Qualitative Evaluations

> Category 3: semantically related but visually different scenes

Quantitative Evaluations

> Pascal 3D+ dataset (20 color image pairs for each category, 12 categories):

	aero	bike	boat	bottle	bus	car	chair	table	mbike	sofa	train	tv	mean
PatchMatch (Barnes et al. 2009)	6.5	6.3	2.6	2.9	2.3	4.7	3.3	12.5	2.0	0.0	4.2	2.6	4.2
SIFT Flow (Liu et al. 2011)	8.1	14.3	5.1	26.1	25	20.9	13.3	6.3	14.3	15.4	4.2	44.7	16.5
Cycle consistency (Zhou et al. 2016)	12.9	6.3	10.3	39.1	27.3	23.3	13.3	12.5	6.1	19.2	12.5	36.8	18.3
Ours	19.4	7.9	15.4	27.5	47.7	11.6	20.0	6.3	18.4	15.4	12.5	50.0	21.0

Table 2. Correspondence accuracy measured in PCK ($\alpha = 0.1$). The test is conducted on randomly selected 20 pairs of each category of PASCAL3D+ dataset.

Results: Photo to Style

Reference

Reference

Output

Output

Results: Photo to Style

Source

Reference

Source

Reference

Source

Reference

Output

Output

Output

Results: Photo to Style

Comparisons

Source

Reference

Neural style

MRF

Deep style

Ostagram

Ours

Comparisons

source

Neural style

Perceptual loss

reference

MRF

Ostagram

Ours

Results: Style to Style

A' (output)

B (output)

B' (input)

Results: Style to Photo

Results: Style to Photo

Results: Photo to Photo

Source

Portrait style transfer [Shih et al. 2014]

Our result

Results: Photo to Photo

Source Reference

Deep photo style [Luan et al. 2017]

Our result

Results: Photo to Photo

Reference

Source

Deep photo style [Luan et al. 2017]

Our result

Results: Time Lapse

Input (src)

Input (ref 3)

Output &

Limitation:

Fails to find correct matches for the object which is missing in the reference

Limitation:

Fails to build correspondences between scenes varying a lot in scales

Limitation:

No geometry style transfer

source reference our result

Thanks!

https://github.com/msracver/Deep-Image-Analogy

Q&A