### 3D Graph Neural Networks for RGBD Semantic Segmentation



#### Xiaojuan Qi<sup>1</sup>, Renjie Liao<sup>2,3</sup>, Jiaya Jia<sup>1,4</sup>, Sanja Fidler<sup>2</sup>, Raquel Urtasun<sup>2,3</sup>

<sup>1</sup>The Chinese University of Hong Kong <sup>2</sup> University of Toronto <sup>3</sup>Uber Adevanced Technologies Group <sup>4</sup>Youtu Lab, Tencent

### Depth Sensors





#### Microsoft Kinect

#### Intel RealSense

#### Depth information available





Dual Camera Smartphone

Dual Camera UAV

### Problem



#### Segmentation map

Depth Image

### Previous Approaches



Depth Image

### Motivation



2D Image

### Motivation



Accurate Context3D Geometry

3D Point Cloud



#### 3D Point Cloud is non-uniformly structured data



Grid structured data

Non-uniform structured data



### 3D Graph Neural Networks

### 3D Graph Neural Networks (3DGNN)

#### • Graph Construction

#### • Propagation Model

### **3DGNN: Graph Construction**

- Graph Construction
  - $\succ$  Node: each point in the cloud
  - ➤ Edge: directed edge





## **3DGNN: Propagation Model**

- Node v is associated with a state vector:  $h_v$ .
- The state vector is recurrently updated based on its history state and messages from its neighbor .



## **3DGNN: Propagation Model**

### • In each block, we perform:

- Message computation
- Message aggregation
- Node state update

### **3DGNN: Message Computation**

• Step 1: For each directed edge (*u*, *v*), the message is:

$$m_{uv} = g_{uv}(h_u)$$

 $g_{uv}$ : a message function (an identity mapping in our case).



## **3DGNN: Message Aggregation**

Step 2: Each node ν aggregates messages from its neighbors Ω<sub>ν</sub>:

### $M_{v} = q\{m_{uv} | u \in \Omega_{v}\}$

q: aggregation function (average in our case)



### 3DGNN: Node State Update

• Step 3: Update state of node *v*:

$$h_{\nu}^{t+1} = f(M_{\nu}^t, h_{\nu}^t)$$

f: update function (MLP with ReLu in our case)



### Model Overview



### Generalization of Existing Models

#### ✤ 3D GNN to PointNet



#### ✤ 3D GNN to RNN/LSTM

➤ Graph structure → chain structure

### Generalization of Existing Models

#### MRF Inference

$$Q(y_i) = \frac{1}{Z_i} \{ -\phi_u(y_i) - \sum_{j \in \Omega_i} E_{Q(y_i)} [\phi_p(y_j, y_i)] \}$$

#### Graphical Neural Network Interpretation



 $E_{Q(y_i)}[\phi_p(y_j, y_i)]$ Negation summation Softmax

# Quantitative Experimental Results

### Evaluation

| [Gupta et al. 2014]    | 28.6 | 35.1 |
|------------------------|------|------|
|                        |      |      |
| [Eigen an Fergus 2015] | 34.1 | 45.1 |
|                        |      |      |
| 3DGNN (VGG)            | 41.7 | 55.4 |

NYUD2 test set under 40 classes setting

### Evaluation

| [Song et al. 2014] | -    | 36.3 |
|--------------------|------|------|
|                    |      |      |
| [Li et al. 2016]   | -    | 48.1 |
|                    | 42.3 | 54.6 |
| 3DGNN (ResNet101)  | 45.9 | 57.0 |

SUN-RGBD test set

## Ablation Study

• Effectiveness of 3D Graph Neural Network

| NYUD2-40 | Unary CNN | 37.1 | 51.0 |
|----------|-----------|------|------|
|          |           |      |      |
|          | 3D GNN    | 39.9 | 54.0 |
|          |           |      |      |
|          | 2D GNN    | 38.9 | 50.3 |
|          | 3D GNN    | 40.2 | 52.5 |

## Qualitative Experimental Results

# Visual Results



## Visual Results



### Visual Results



### Conclusion

- **3DGNN** is a general framework for modeling RGBD data.
  - **3DGNN** achieves state-of-the-art performance on RGBD semantic segmentation.

### Thank You!



Image

2D (Resnet-101)