Towards 3D Human Pose Estimation in the
Wild: a Weakly-supervised Approach

Xingyi Zhou, Qixing Huang, Xiao Sun, Xiangyang Xue, Yichen Wei
UT Austin & MSRA & Fudan



Human Pose Estimation
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Current Research on 2D Human Pose
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¢ 2D human pose estimation is a well studied problem

Zhe Cao, Tomas Simon, Shih-En Wei, Yaser Sheikh, Realtime Multi-Person 2D Pose Estimation using
Part Affinity Fields, CVPR 2017



s 2D human pose all we need?

e Ambiguous 3D structure

Zhe Cao, Tomas Simon, Shih-En Wei, Yaser Sheikh, Realtime Multi-Person 2D Pose Estimation using
Part Affinity Fields, CVPR 2017



Why we have such a success on 2D7

¢ 2D human pose data is easy to annotate and largely available

Mykhaylo Andriluka, Leonid Pishchulin, Peter Gehler, Schiele Bernt, 2D Human Pose Estimation: New
Benchmark and State of the Art Analysis, CVPR 2014



) data not easy to annotate




Current 3D human pose data.

e Captured in control-environment
with accurate sensors.

Catalin lonescu, Dragos Papava, Vlad Olaru and Cristian Sminchisescu, Human3.6M: Large Scale
Datasets and Predictive Methods for 3D Human Sensing in Natural Environments, PAMI 2014



Supervised Pose Regression on Human3.6M
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Xingyi Zhou, Xiao Sun, Wei Zhang, Shuang Liang, Yichen Wei. Deep Kinematic Pose Regression, In
ECCV Workshop on Geometry Meets Deep Learning, 2016



Kinematic Pose Regression-Problems

* fraining data is biased to indoor environment

Fail on in-the-wild images!

Xingyi Zhou, Xiao Sun, Wei Zhang, Shuang Liang, Yichen Wei. Deep Kinematic Pose Regression, In
ECCV Workshop on Geometry Meets Deep Learning, 2016



Problem setting

Given:

Goal:

In-the-wild image
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Indoor images

: with 3D annotation




Previous approaches: 2 Stages
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Wei et al. Convolutional Pose Machines

Newell et al. Hourglass Network

part heatmaps

Bulat et al. Part Heatmap Regression
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2D pose estimation
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Zhou et al. Shape Convex

Chen et al. KNN Matching
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3D geometry recovery



Previous approaches: 2 Stages
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Bulat et al. Part Heatmap Regression

for 3D pose recovery, 1s discarded in the second step.
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The original in-the-wild 2D 1mage, which contains rich cues
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Our solution:Weakly-supervised Transfer
for 3D Human pose estimation in the wild

/" Indoorimages
- with 3D annotation :

e Train a unified neural network
using both 2D and 3D
annotation.

e 2D and 3D pose are inherently (Y'L L |

entangled A - Lg 1

* 2D-to-3D transfer: provide rich -~ © = e
iImage features

e 3D-t0-2D transfer: provide 3D

annotation &

In-the-wild image 3D pose



Weakly-supervised Transfer
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¢ Images from both dataset are fed into the same mini-batch

e First estimate 2D pose and then regress depth from 2D results and lower
layer image features

e Geometry constraint is applied for weakly-labeled 2D data



Weakly-supervised Transfer
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¢ Images from both dataset are fed into the same mini-batch

e First estimate 2D pose and then regress depth from 2D results and lower
layer image features

e Geometry constraint is applied for weakly-labeled 2D data



2D Human Pose estimation: HourglassNetwork

Newell A, Yang K, Deng J. Stacked hourglass networks for human pose estimation, ECCV 2016



Weakly-supervised Transfer
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Geometry Constraint

Key idea: Ratios between bone lengths remain relative fixed

Symmetry
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Weakly-supervised Transfer
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Evaluation-Datasets

o MPII
e 2D annotation, in-the-wild images
e Used for weakly-supervised training

e Human 3.6M
e MoCap 3D annotation, indoor
e Used for supervised training

e MPI-INF-3DHP
e MoCap 3D annotation, indoor & outdoor
e Used for evaluation

e MPII-Validation
e Used for evaluation




Evaluation-Baseline setup

I “supervised 2D |
© heap-map regression_ !

() summation —_5  skip-connection

"Yg....:.'

. 20 d‘ata :
= %consmmt'
..‘A EEEEm l’l
(} le p
T 3D data:
regressmn
d
- Depth 7
A batch of images [ . . regression é% =
from both datasets  : layers ' 2D pose estimation module 1 module 4

Transfer Geometry

3D/wo geo X X
3D/w geo X v
3D+2D/wogeo vV X
3D+2D/w geo v v

Table 2. Definition of our baselines. Transfer for taking both
datasets for training, Geometry for the geometry constraint loss.



Supervised 3D pose estimation on Human3.6M dataset

Sitting  SittingDown Smoking Waiting WalkDog Walking WalkPair Average

Chen & Ramanan [6] 133.14 240.12 106.65 106.21 87.03 114.05 90.55 114.18
Tome et al. [26] 110.19 172.91 8495  85.78 86.26 7136 73.14 88.39
Zhou et al. [35] 124.52 199.23 107.42 118.09 11423 79.39 97.70 79.9

Metha et al. [16] 96.19 122.92 70.82  68.45 5441  82.03 59.79 74.14
Pavlakos et al. [20] 76.84 103.48 65.73 61.56 67.55 56.38 59.47 66.92
3D/wo geo 98.41 141.60 80.01  86.31 61.89 76.32 7147 82.44
3D/w geo 93.52 131.75 79.61 85.10 6749 7695 71.99 80.98
3D+2D/wo geo 74.79 113.99 64.34  68.78 5222 6397 57.31 65.69
3D+2D/w geo 75.20 111.59 64.15 6605 5143 63.22 5533 64.90

e 3D/wo geo (82.44mm) shows the effectiveness of our architecture.
e 3D/w geo shows the geo-constraint is consistent with supervision.

e Training with 3D&2D data (3D+2D/wo geo) provides great performance gain.

e \Weakly supervised constraint 3D+2D/w geo brings further improvements.

e Only 2-steps methods Chen & Ramanan(114.18mm) and Zhou et al,(79.9mm)
can be applied in-the-wild.



Results Analysis

Sitting  SittingDown Smoking Waiting WalkDog Walking WalkPair Average
Chen & Ramanan [6] 133.14 240.12 106.65 106.21 87.03 114.05 90.55 114.18

Tome et al. [26] 110.19 17291 8495 8578 8626 7136 73.14  88.39
Zhou et al. [35] 12452 199.23  107.42 11809 11423 7939 9770  79.9
Metha et al. [16] 96.19 12292  70.82 6845 5441 8203 5979  74.14
Paviakosetal. [20] 7684 10348 6573 6156 6755 5638 5947 6692 2D PCK
3D/wo geo 9841 14160 8001 8631 6189 7632 7147 8244 90.01%
3D/w geo 9352 13175 7961 8510 6749 7695 7199 8098 90.57%
3D+2D/wo geo 7479 11399 6434 6878 5222 6397 5731 6569 QQ) 039
3D+2D/w geo 7520 11159 6415 6605 5143 6322 5533  64.90

91.62%

® |s the improvement from more accurate 2D position or better depth estimation?
¢ All baselines have very high 2D pose estimation.
e This indicates that depth estimation are greatly benefit from more 2D data.
e 2-stage approaches can not have such benefit.



In-the-wild 3D pose estimation on MPII-INF-3DHP Dataset
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Stand/Walk Exercise Chair Reach Ground Sport Misc Total PCK AUC
Metha et al.(H36M+MPII) [16] 76.4 629 58.1 574 27.8 669 65.6 61.0 28.3
3D/wo geo 28.6 412 414 343 197 364 364 31.5 18.0
3D/w geo 37.0 445 454 38.8 229 50.1 30.8 37.7 20.9
3D+2D/wo geo 82.3 66.4 603 69.2 37.1 65.7 678 65.8 32.1
3D+2D/w geo 85.4 71.0 60.7 714 37.8 709 744 69.2 325

Metha et al.(MPI-INF-3DHP) [ 1 6] 85.0 70.1 727 652 47.0 79.0 70.3 70.8 35.9
Table 2. Results of MPI-INF-3DHP Dataset. The results are shown in PCK and AUC.

¢ 3D data-only methods fail on in-the-wild images.

e 3D+2D/wo geo wins its counterpart of Metha et al.

e Geo-constraint provides further improvements, whose results are close to
training on the corresponding training set.




In-the-wild 3D pose estimation on MPII-Validation-3D Set

¢ 3D+2D/w geo performs better and
correct the symmetry invalidity.
e Our framework keeps 2D accuracy.

3D+2D/wo geo 3D+2D/w geo

Upper arm 42.4mm 37.8mm
Lower arm 60.4mm 50.7mm
Upper leg 43.5mm 43.4mm
Lower leg 59.4mm 47.8mm
Upper arm 6.27px 4.80px
Lower arm 10.11px 6.64px
Upper leg 6.89px 4.93px
Lower leg 8.03px 6.22px



More qualitative results

Predicted Predicted Input Predicted




Failure Cases

Input Predicted Input Predicted Input Predicted

inaccurate 2D prediction/ ambiguous depth/ false torso length.



Extension
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e An improved weak-supervision for rigid objects.
e The predicted pose of the same object from different viewpoint should be
consistent with each other.

Xingyi Zhou, Arjun Karpur, Chuang Gan, Linjie Luo, Qixing Huang, Unsupervised Domain Adaptation
for 3D Keypoint Prediction from a Single Depth Scan, arXiv 1712.05765, 2017



Extension
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e Add temporal refinement. . angorilyreined
. inal 3D Pose 3D pose P,
e Add angle constraint.
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Rishabh Dabral, Anurag Mundhada, Uday Kusupati, Safeer Afaque, Arjun Jain, Structure-Aware and
Temporally Coherent 3D Human Pose Estimation, arXiv:1711.09250



Demo



Code & Model Available!

PyTorch




