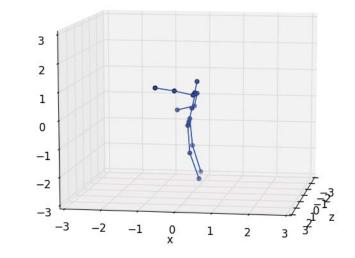
## Towards 3D Human Pose Estimation in the Wild: a Weakly-supervised Approach Xingvi Zhou, Qixing Huang, Xiao Sun, Xiangyang Xue, Yichen W

Xingyi Zhou, Qixing Huang, Xiao Sun, Xiangyang Xue, Yichen Wei UT Austin & MSRA & Fudan

## Human Pose Estimation

#### Pose representation





Joint locations

$$y = \{p_1, \cdots, p_N\}$$

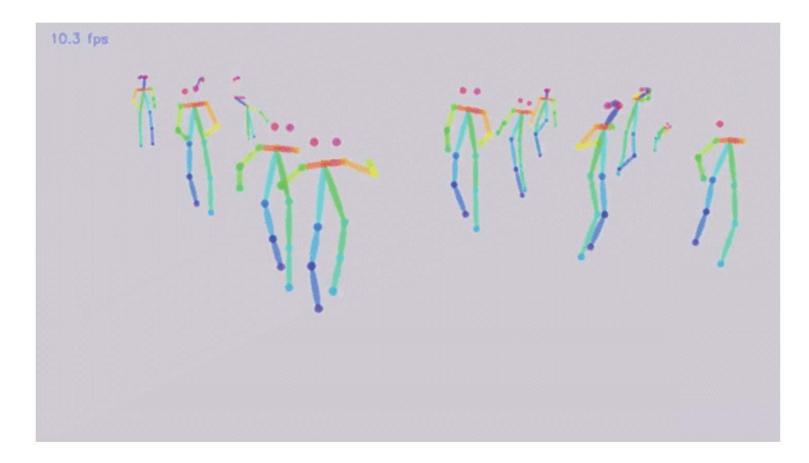
## Current Research on 2D Human Pose



• 2D human pose estimation is a well studied problem

Zhe Cao, Tomas Simon, Shih-En Wei, Yaser Sheikh, Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields, CVPR 2017

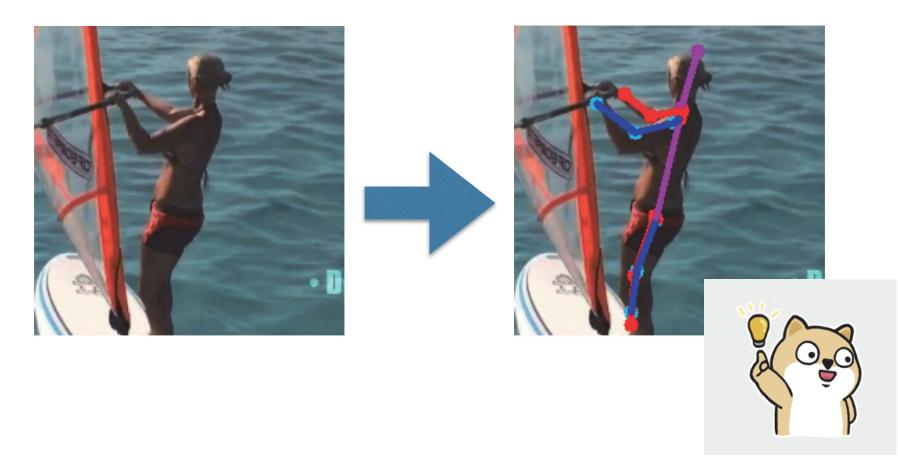
## Is 2D human pose all we need?



#### • Ambiguous 3D structure

Zhe Cao, Tomas Simon, Shih-En Wei, Yaser Sheikh, Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields, CVPR 2017

## Why we have such a success on 2D?

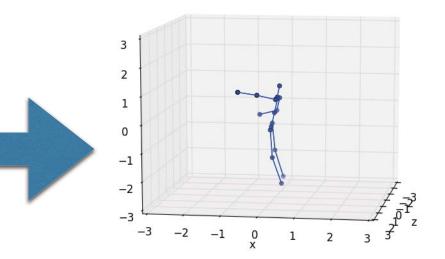


• 2D human pose data is easy to annotate and largely available

Mykhaylo Andriluka, Leonid Pishchulin, Peter Gehler, Schiele Bernt, 2D Human Pose Estimation: New Benchmark and State of the Art Analysis, CVPR 2014

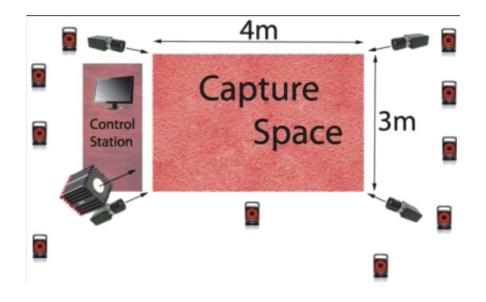
## 3D data not easy to annotate







## Current 3D human pose data.

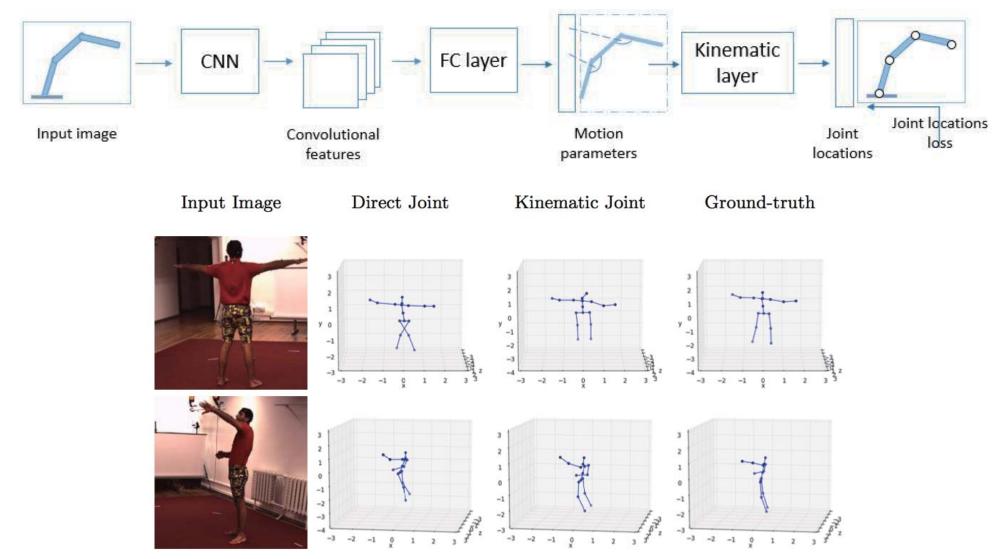


• Captured in control-environment with accurate sensors.



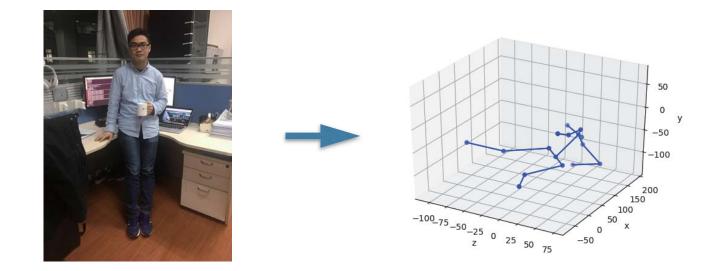
Catalin Ionescu, Dragos Papava, Vlad Olaru and Cristian Sminchisescu, Human3.6M: Large Scale Datasets and Predictive Methods for 3D Human Sensing in Natural Environments, PAMI 2014

## Supervised Pose Regression on Human3.6M



Xingyi Zhou, Xiao Sun, Wei Zhang, Shuang Liang, Yichen Wei. Deep Kinematic Pose Regression, In ECCV Workshop on Geometry Meets Deep Learning, 2016

## Kinematic Pose Regression-Problems



• Training data is biased to indoor environment

#### Fail on in-the-wild images!

Xingyi Zhou, Xiao Sun, Wei Zhang, Shuang Liang, Yichen Wei. Deep Kinematic Pose Regression, In ECCV Workshop on Geometry Meets Deep Learning, 2016

## Problem setting



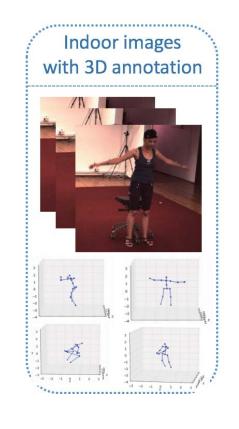


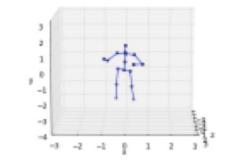
#### Given:



In-the-wild image

#### Goal:

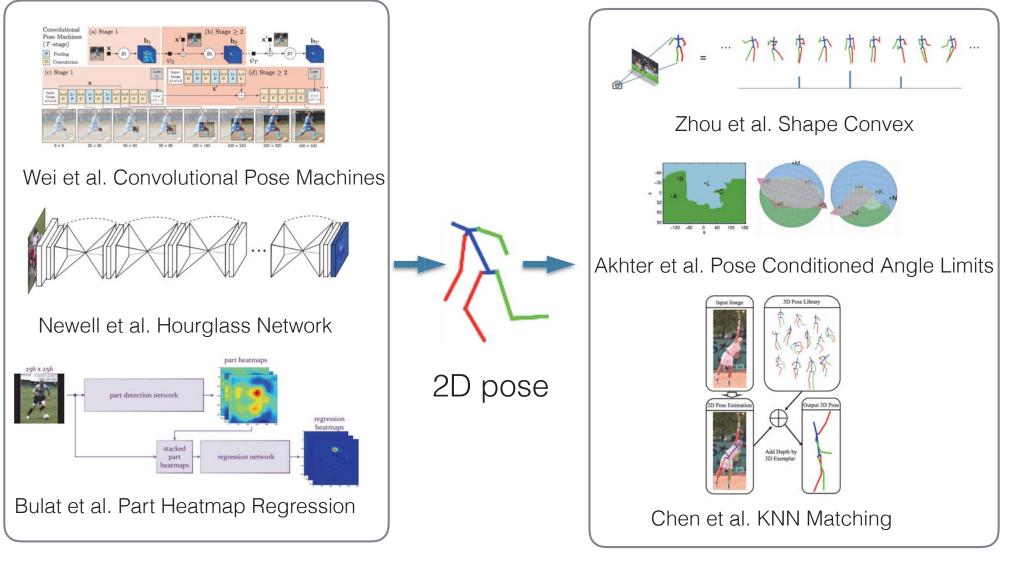




3D pose

30

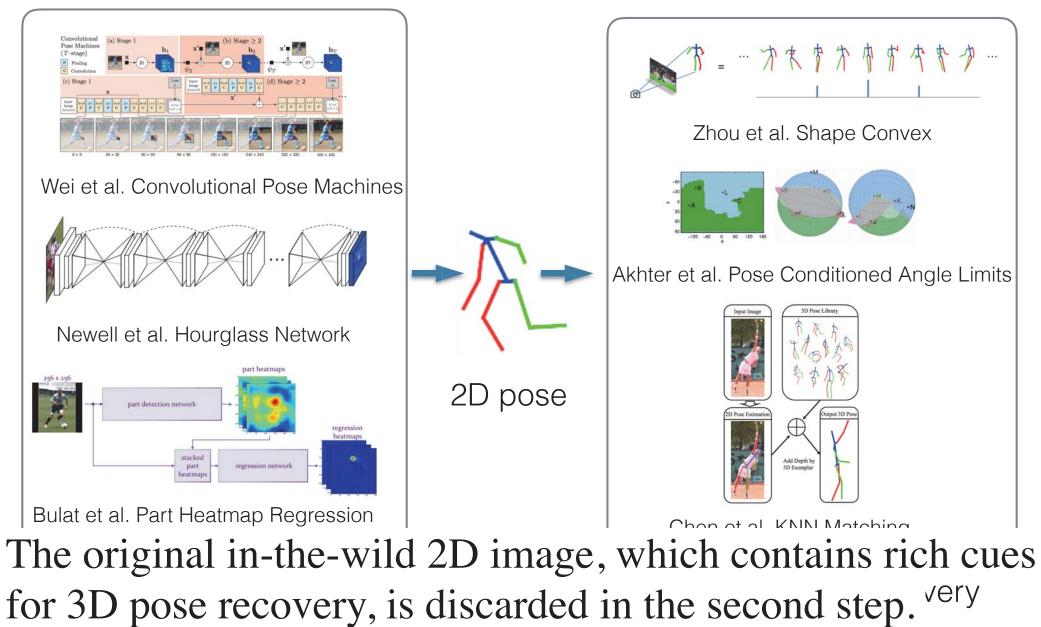
## Previous approaches: 2 Stages



2D pose estimation

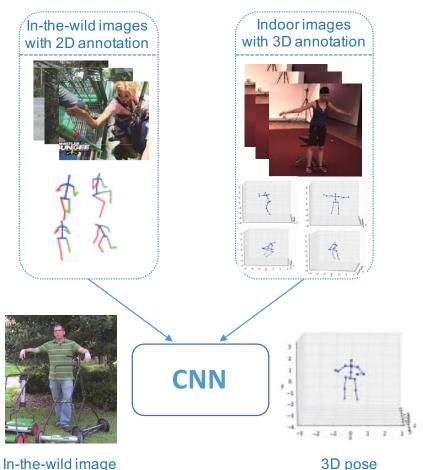
3D geometry recovery

## Previous approaches: 2 Stages

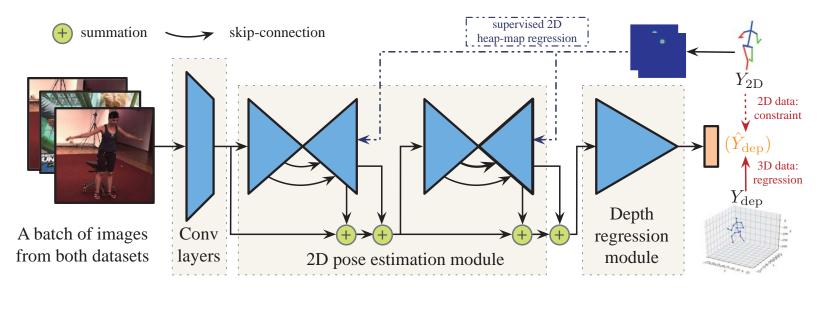


# Our solution: Weakly-supervised Transfer for 3D Human pose estimation in the wild

- Train a unified neural network using both 2D and 3D annotation.
- 2D and 3D pose are inherently entangled
- 2D-to-3D transfer: provide rich image features
- 3D-to-2D transfer: provide 3D annotation



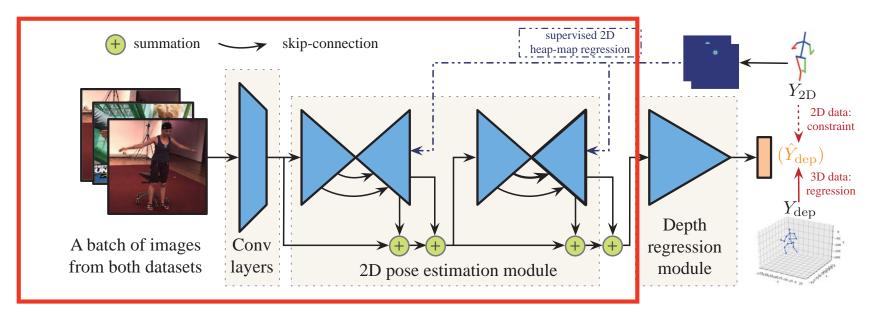
## Weakly-supervised Transfer



$$\mathcal{S}_{2D} = \{\mathcal{I}_{2D}, \mathcal{Y}_{2D}\} \qquad \mathcal{S}_{3D} = \{\mathcal{I}_{3D}, \mathcal{Y}_{2D}, \mathcal{Y}_{dep}\}$$

- Images from both dataset are fed into the same mini-batch
- First estimate 2D pose and then regress depth from 2D results and lower layer image features
- Geometry constraint is applied for weakly-labeled 2D data

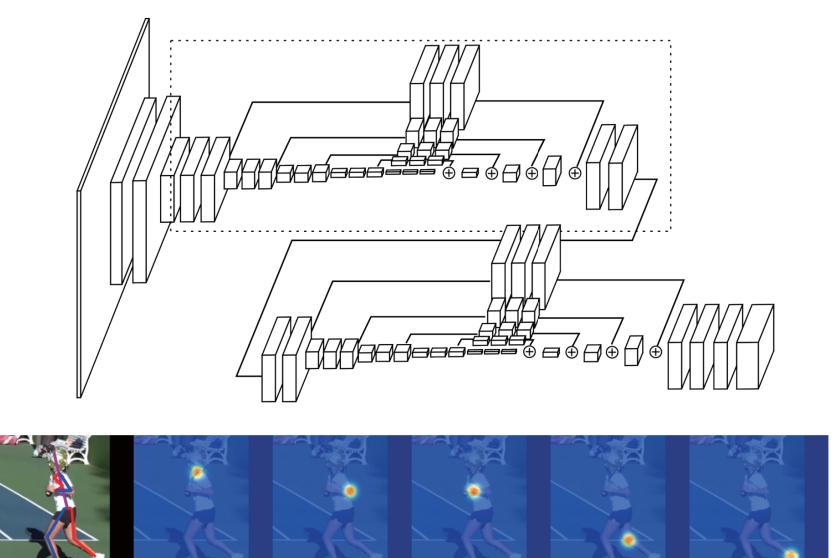
## Weakly-supervised Transfer



$$\mathcal{S}_{2D} = \{\mathcal{I}_{2D}, \mathcal{Y}_{2D}\} \qquad \mathcal{S}_{3D} = \{\mathcal{I}_{3D}, \mathcal{Y}_{2D}, \mathcal{Y}_{dep}\}$$

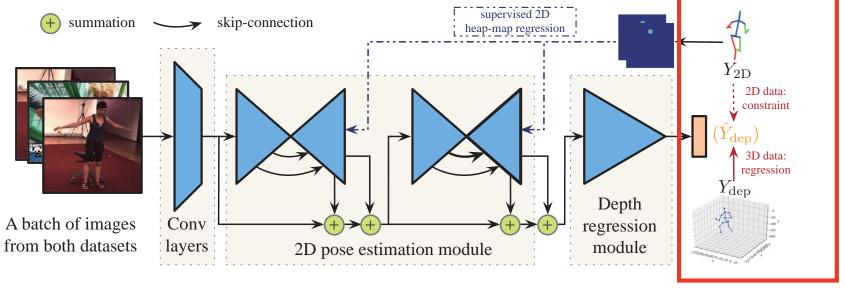
- Images from both dataset are fed into the same mini-batch
- First estimate 2D pose and then regress depth from 2D results and lower layer image features
- Geometry constraint is applied for weakly-labeled 2D data

### 2D Human Pose estimation: HourglassNetwork



Newell A, Yang K, Deng J. Stacked hourglass networks for human pose estimation, ECCV 2016

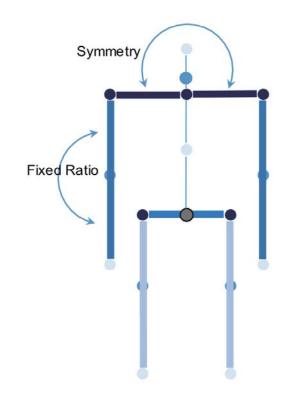
## Weakly-supervised Transfer



- $\mathcal{S}_{2D} = \{\mathcal{I}_{2D}, \mathcal{Y}_{2D}\} \qquad \mathcal{S}_{3D} = \{\mathcal{I}_{3D}, \mathcal{Y}_{2D}, \mathcal{Y}_{dep}\}$
- Images from both dataset are fed into the same mini-batch
- First estimate 2D pose and then regress depth from 2D results and lower layer image features
- Geometry constraint is applied for weakly-labeled 2D data

## Geometry Constraint

Key idea: Ratios between bone lengths remain relative fixed



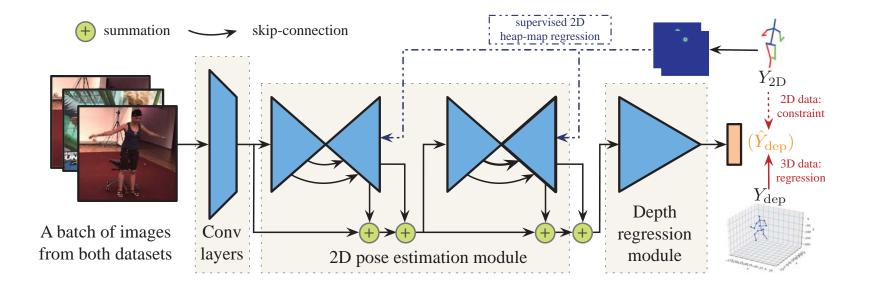
 $R_i$ : a set of involved bones in a skeleton group  $l_e$ : length of bone e  $\overline{l}_e$ : length of bone e in canonical skeleton  $\{\frac{l_e}{\overline{l}_e}\}_{e \in R_i}$  should remain fixed, i.e. has zero variance

$$L_{geo}(\hat{Y}_{dep}|Y_{2D}) = \sum_{i} rac{1}{|R_i|} \sum_{e \in R_i} (rac{l_e}{ar{l}_e} - ar{r}_i)^2,$$

where

$$\overline{r}_i = rac{1}{|R_i|} \sum_{e \in R_i} rac{l_e}{\overline{l}_e}.$$

## Weakly-supervised Transfer



$$\mathcal{S}_{2D} = \{\mathcal{I}_{2D}, \mathcal{Y}_{2D}\} \qquad \mathcal{S}_{3D} = \{\mathcal{I}_{3D}, \mathcal{Y}_{2D}, \mathcal{Y}_{dep}\}$$

$$L_{dep}(\hat{Y}_{dep}|I, Y_{2D}) = \begin{cases} \lambda_{reg} ||Y_{dep} - \hat{Y}_{dep}||^2, & if \ I \in \mathcal{I}_{3D} \\ \lambda_{geo} L_{geo}(\hat{Y}_{dep}|Y_{2D}), & if \ I \in \mathcal{I}_{2D} \end{cases}$$

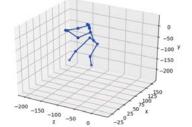
$$L(\hat{Y}_{HM}, \hat{Y}_{dep}|I) = L_{2D}(\hat{Y}_{HM}, Y_{2D}) + L_{dep}(\hat{Y}_{dep}|I, Y_{2D})$$

## **Evaluation-Datasets**

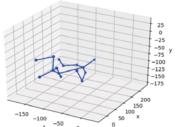
- MPII
  - 2D annotation, in-the-wild images
  - Used for weakly-supervised training
- •Human 3.6M
  - MoCap 3D annotation, indoor
  - Used for supervised training
- MPI-INF-3DHP
  - MoCap 3D annotation, indoor & outdoor
  - Used for evaluation
- MPII-Validation
  - Used for evaluation



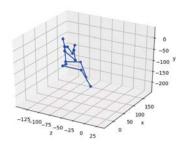




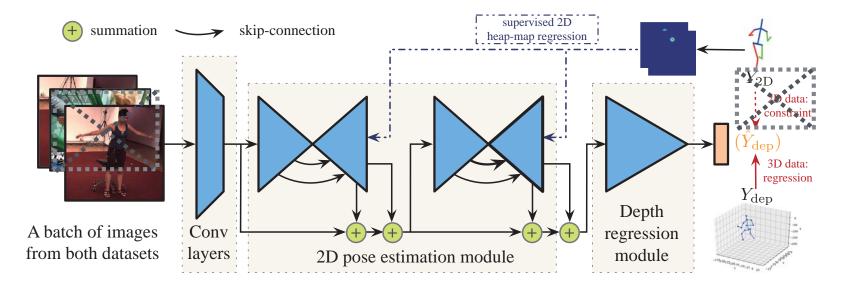








## **Evaluation-Baseline setup**



|              | Transfer | Geometry |
|--------------|----------|----------|
| 3D/wo geo    | ×        | ×        |
| 3D/w geo     | ×        | 1        |
| 3D+2D/wo geo | 1        | ×        |
| 3D+2D/w geo  | 1        | 1        |

Table 2. Definition of our baselines. *Transfer* for taking both datasets for training, *Geometry* for the geometry constraint loss.

#### Supervised 3D pose estimation on Human3.6M dataset

|                      | Sitting      | SittingDown | Smoking | Waiting | WalkDog | Walking | WalkPair | Average      |
|----------------------|--------------|-------------|---------|---------|---------|---------|----------|--------------|
| Chen & Ramanan [6]   | 133.14       | 240.12      | 106.65  | 106.21  | 87.03   | 114.05  | 90.55    | 114.18       |
| Tome et al. [26]     | 110.19       | 172.91      | 84.95   | 85.78   | 86.26   | 71.36   | 73.14    | 88.39        |
| Zhou et al. [35]     | 124.52       | 199.23      | 107.42  | 118.09  | 114.23  | 79.39   | 97.70    | 79.9         |
| Metha et al. [16]    | 96.19        | 122.92      | 70.82   | 68.45   | 54.41   | 82.03   | 59.79    | 74.14        |
| Pavlakos et al. [20] | 76.84        | 103.48      | 65.73   | 61.56   | 67.55   | 56.38   | 59.47    | 66.92        |
| 3D/wo geo            | 98.41        | 141.60      | 80.01   | 86.31   | 61.89   | 76.32   | 71.47    | 82.44        |
| 3D/w geo             | 93.52        | 131.75      | 79.61   | 85.10   | 67.49   | 76.95   | 71.99    | 80.98        |
| 3D+2D/wo geo         | <b>74.79</b> | 113.99      | 64.34   | 68.78   | 52.22   | 63.97   | 57.31    | 65.69        |
| 3D+2D/w geo          | 75.20        | 111.59      | 64.15   | 66.05   | 51.43   | 63.22   | 55.33    | <b>64.90</b> |

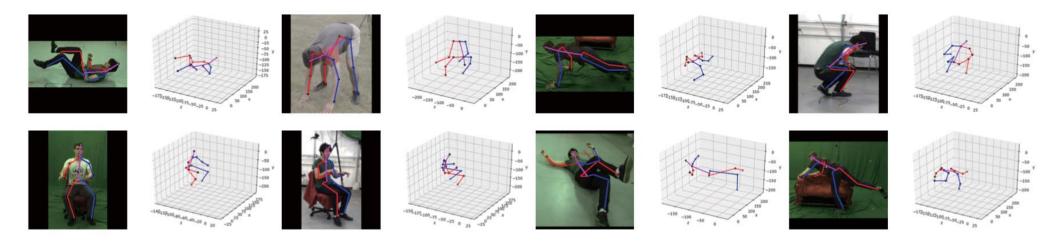
- **3D/wo geo** (82.44mm) shows the effectiveness of our architecture.
- 3D/w geo shows the geo-constraint is consistent with supervision.
- Training with 3D&2D data (**3D+2D/wo geo**) provides great performance gain.
- Weakly supervised constraint **3D+2D/w geo** brings further improvements.
- Only 2-steps methods Chen & Ramanan(114.18mm) and Zhou et al,(79.9mm) can be applied in-the-wild.

#### **Results Analysis**

|                      | Sitting      | SittingDown | Smoking | Waiting | WalkDog | Walking | WalkPair | Average |
|----------------------|--------------|-------------|---------|---------|---------|---------|----------|---------|
| Chen & Ramanan [6]   | 133.14       | 240.12      | 106.65  | 106.21  | 87.03   | 114.05  | 90.55    | 114.18  |
| Tome et al. [26]     | 110.19       | 172.91      | 84.95   | 85.78   | 86.26   | 71.36   | 73.14    | 88.39   |
| Zhou et al. [35]     | 124.52       | 199.23      | 107.42  | 118.09  | 114.23  | 79.39   | 97.70    | 79.9    |
| Metha et al. [16]    | 96.19        | 122.92      | 70.82   | 68.45   | 54.41   | 82.03   | 59.79    | 74.14   |
| Pavlakos et al. [20] | 76.84        | 103.48      | 65.73   | 61.56   | 67.55   | 56.38   | 59.47    | 66.92   |
| 3D/wo geo            | 98.41        | 141.60      | 80.01   | 86.31   | 61.89   | 76.32   | 71.47    | 82.44   |
| 3D/w geo             | 93.52        | 131.75      | 79.61   | 85.10   | 67.49   | 76.95   | 71.99    | 80.98   |
| 3D+2D/wo geo         | <b>74.79</b> | 113.99      | 64.34   | 68.78   | 52.22   | 63.97   | 57.31    | 65.69   |
| 3D+2D/w geo          | 75.20        | 111.59      | 64.15   | 66.05   | 51.43   | 63.22   | 55.33    | 64.90   |

- Is the improvement from more accurate 2D position or better depth estimation?
  - All baselines have very high 2D pose estimation.
  - This indicates that depth estimation are greatly benefit from more 2D data.
  - 2-stage approaches can not have such benefit.

#### In-the-wild 3D pose estimation on MPII-INF-3DHP Dataset



|                                 | Stand/Walk | Exercise | Chair | Reach | Ground | Sport | Misc | Total PCK | AUC  |
|---------------------------------|------------|----------|-------|-------|--------|-------|------|-----------|------|
| Metha et al.(H36M+MPII) [16]    | 76.4       | 62.9     | 58.1  | 57.4  | 27.8   | 66.9  | 65.6 | 61.0      | 28.3 |
| 3D/wo geo                       | 28.6       | 41.2     | 41.4  | 34.3  | 19.7   | 36.4  | 36.4 | 31.5      | 18.0 |
| 3D/w geo                        | 37.0       | 44.5     | 45.4  | 38.8  | 22.9   | 50.1  | 30.8 | 37.7      | 20.9 |
| 3D+2D/wo geo                    | 82.3       | 66.4     | 60.3  | 69.2  | 37.1   | 65.7  | 67.8 | 65.8      | 32.1 |
| 3D+2D/w geo                     | 85.4       | 71.0     | 60.7  | 71.4  | 37.8   | 70.9  | 74.4 | 69.2      | 32.5 |
| Metha et al.(MPI-INF-3DHP) [16] | Contractor | 70.1     | 72.7  | 65.2  | 47.0   | 79.0  | 70.3 | 70.8      | 35.9 |

Table 2. Results of MPI-INF-3DHP Dataset. The results are shown in PCK and AUC.

- 3D data-only methods fail on in-the-wild images.
- 3D+2D/wo geo wins its counterpart of Metha et al.
- Geo-constraint provides further improvements, whose results are close to training on the corresponding training set.

#### In-the-wild 3D pose estimation on MPII-Validation-3D Set



#### 3D+2D/wo geo 3D+2D/w geo

- **3D+2D/w geo** performs better and correct the symmetry invalidity.
- Our framework keeps 2D accuracy.

| Upper arm | 42.4mm  | <b>37.8</b> mm |
|-----------|---------|----------------|
| Lower arm | 60.4mm  | <b>50.7</b> mm |
| Upper leg | 43.5mm  | <b>43.4</b> mm |
| Lower leg | 59.4mm  | <b>47.8</b> mm |
| Upper arm | 6.27px  | <b>4.80</b> px |
| Lower arm | 10.11px | <b>6.64</b> px |
| Upper leg | 6.89px  | <b>4.93</b> px |
| Lower leg | 8.03px  | <b>6.22</b> px |

#### More qualitative results

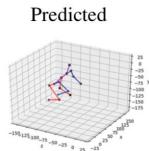












-175159125100-75-50-25 0 25

-150,125,100,75,50,25 0 25

-150\_125\_100\_75\_50\_25 0 25



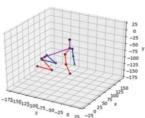
Input

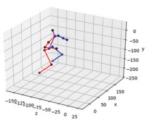


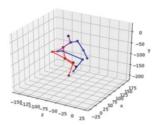


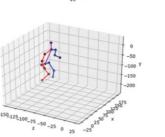










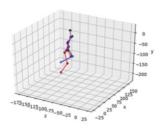


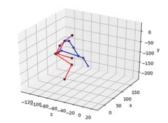


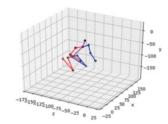


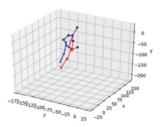


Predicted





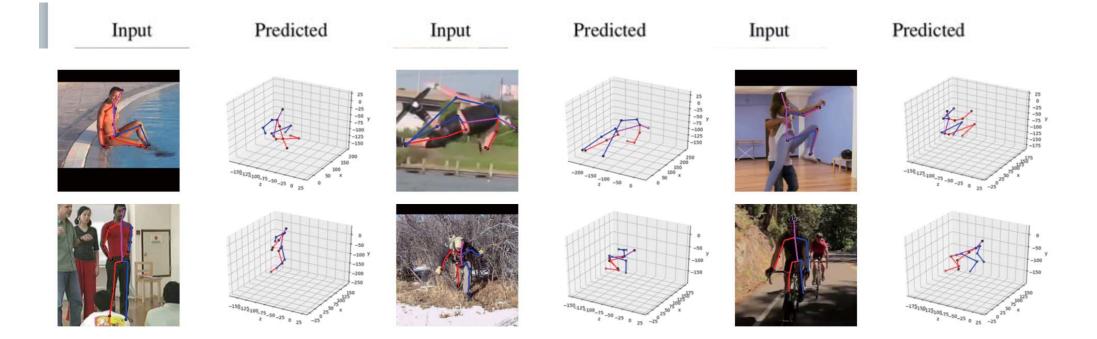




Predicted

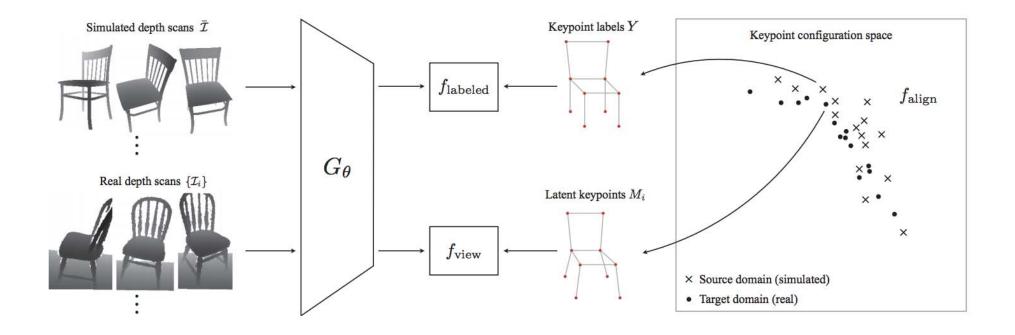
Input

#### Failure Cases



inaccurate 2D prediction/ ambiguous depth/ false torso length.

## Extension

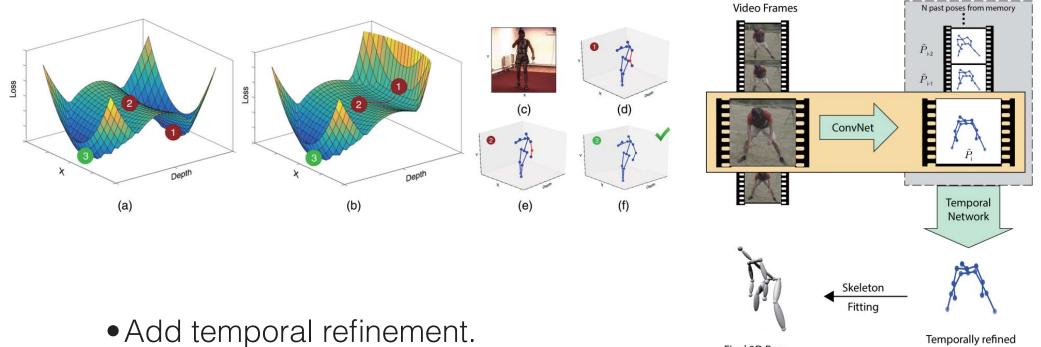


• An improved weak-supervision for rigid objects.

• The predicted pose of the same object from different viewpoint should be consistent with each other.

Xingyi Zhou, Arjun Karpur, Chuang Gan, Linjie Luo, Qixing Huang, Unsupervised Domain Adaptation for 3D Keypoint Prediction from a Single Depth Scan, arXiv 1712.05765, 2017

## Extension



Final 3D Pose

3D pose  $\hat{P}_i$ 

•Add angle constraint.

Rishabh Dabral, Anurag Mundhada, Uday Kusupati, Safeer Afaque, Arjun Jain, Structure-Aware and Temporally Coherent 3D Human Pose Estimation, arXiv:1711.09250

## Demo

## Q & A

#### Code & Model Available!

Torch





