

SurfaceNet: an End-to-end 3D Neural Network for Multiview Stereopsis (MVS)

Mengqi Ji^{*1}, Juergen Gall³, Haitian Zheng², Yebin Liu² and Lu Fang^{†2}

¹Hong Kong University of Science and Technology, Hong Kong, China ²Tsinghua University, Beijing, China ³University of Bonn, Bonn, Germany

Presenter: Mengqi JI (HKUST)

- Introduction to MVS
 - Existing works
- SurfaceNet
 - 2 views case
 - N views case
- Experiment
 - Prepare dataset
 - Comparison
- Conclusion

• Introduction to MVS

- Existing works
- SurfaceNet

- ♦ 2 views case
- N views case
- Experiment
 - Prepare dataset
- Conclusion

Introduction to MVS

- Multi-view Stereopsis (MVS) / 3D reconstruction
- Task:

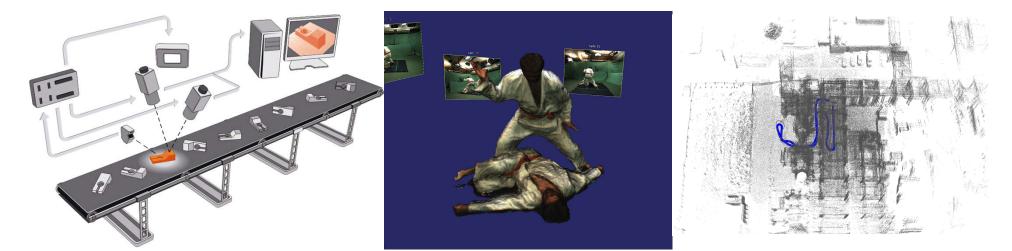
HKUST

- **Inputs:** images with pose parameters
- Outputs: reconstructed 3D representation, such as point cloud, mesh, volumetric
- Difficulties:

. . .

- A lot of information loss (Occlusions)
- Non-Lambertian surface
- Textureless region
- ...

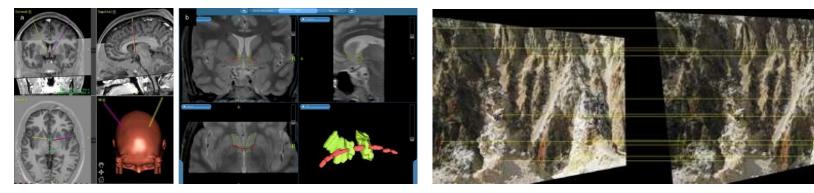
http://cs.bath.ac.uk/~nc537/images/projects/mvs_vase.png



Inspection

Motion Capture

Localization & Navigation



Medical Imaging

Accurate Measurement

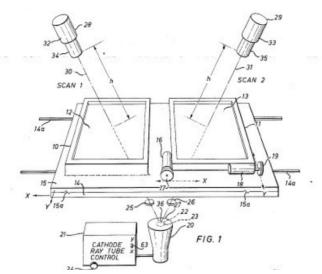
3D Reconstruction History

- Before 1957, operators manually find correspondences
- In 1957, Gilbert Hobrough demonstrated an analog implementation of stereo image correlation (patent shown right).
 - 2 transparient images
 - 1 illuminator below

HKUST

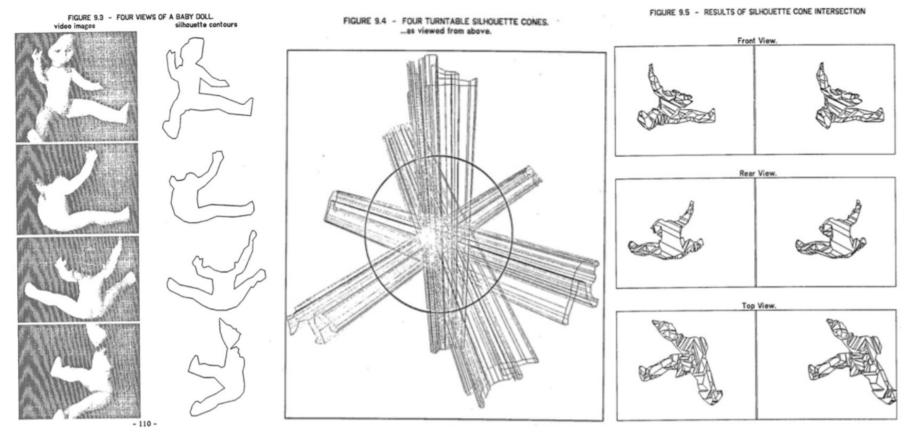
• 2 sensors above \rightarrow compare intensity difference





http://www.freepatentsonline.com/2964642.html

- 1974: shape from silhouettes [Bruce G. Baumgart, Ph.D Thesis]
 - But requires images to segmented.

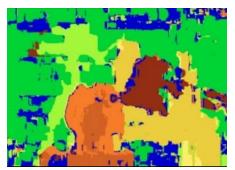


3D Reconstruction History

- 1998: more dense models
 - Graph cut era

HKUST

• Local priors: consider local smoothness assumption: nearby pixels are encouraged to have similar appearance and depth



1998 CVPR: Boykov, Veksler, Zabih, **Graph cut** Stereo

2006 PAMI: Hirschmueller

• 2010: large scale with fine geometry details

2010 PAMI: Furukawa et al.

- Introduction to MVS
 - Existing works
- SurfaceNet

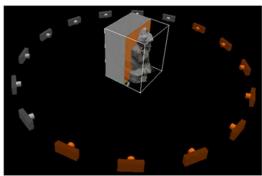
- ♦ 2 views case
- N views case
- Experiment
 - Prepare dataset
- Conclusion

Related Works

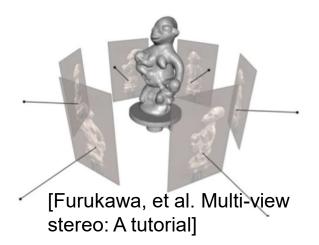
• Standard pipelines:

HKUST

- 1. Volumetric methods, such as:
 - space carving [Seitz & Dyer, CVPR 1997],
 - ray potential model [Ulusoy, Geiger, & Black, 3DV 2015].
- 2. Depth map fusion methods.



http://www.ctralie.com/PrincetonUGRAD/Projects/SpaceCarving/

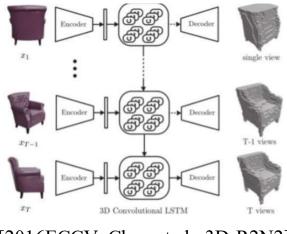


• Problem:

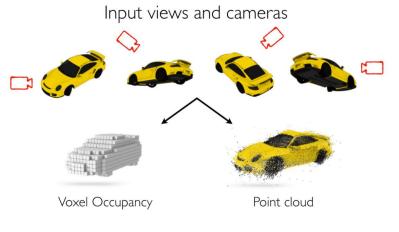
- 1. Computationally expensive graph modelling.
 - Hard to model and solve
- 2. Hand engineered pipeline.
 - Exist multiple potential sub-optimal choices.
- Ours:
 - Can we learn to reconstruct from data \rightarrow easy to train & solve

HKUST Related Works

- Learning based 3D Reconstruction:
 - Idea: Learn a mapping from observations to their underlying 3D shape



[2016ECCV, Choy et al., 3D-R2N2]



[2017NIPS, Kar et al., Learning a Multi-View Stereo Machine]

- Problem:
 - Using Shape **Priors**: reconstruct specific type of models
 - Resolution limitation
- Ours:
 - More general 3D reconstruction with fine detail and without shape priors.

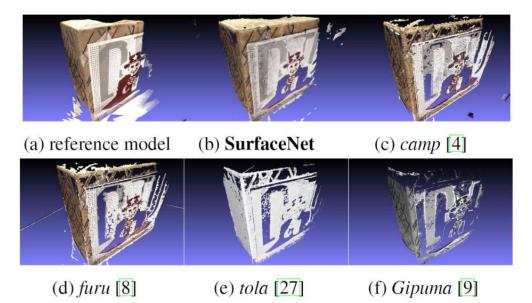
- Introduction to MVS
 - Existing works

• SurfaceNet

- ♦ 2 views case
- N views case
- Experiment
 - Prepare dataset
- Conclusion

HKUST Introduction to MVS

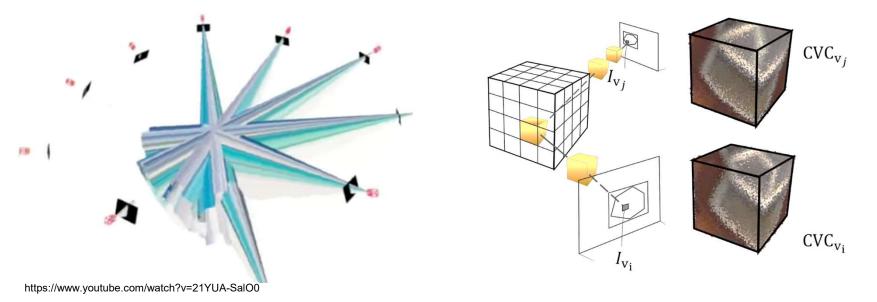
- Question: Can we design an end-to-end learning framework for MVS without shape priors?
- Reinterpretation: MVS predicts 2D surface from a 3D voxel space, analogous to boundary detection, which predicts a 1D boundary from 2D image input.
- *SurfaceNet*: first end-to-end learning framework for MVS
 - takes the image + camera parameters and infers the 3D surface **directly**.
 - photo-consistency and geometric context for dense reconstruction
 - better completeness around the less textured regions compared with other methods.



SurfaceNet ---- colored voxel cube (CVC)

- **Problem**: how to embed the camera parameter into the network; perspective projection is straightforward and highly non-linear.
- Solution: 3D voxel representation for each view: colored voxel cube (CVC)
 - Scene \rightarrow overlapping volumes \rightarrow voxel grid
 - Each pixel corresponds to a voxel ray.

- Colorize different voxels on the same voxel ray as the same color
- Implicitly encodes the camera parameters into a 3D *colored voxel cube*



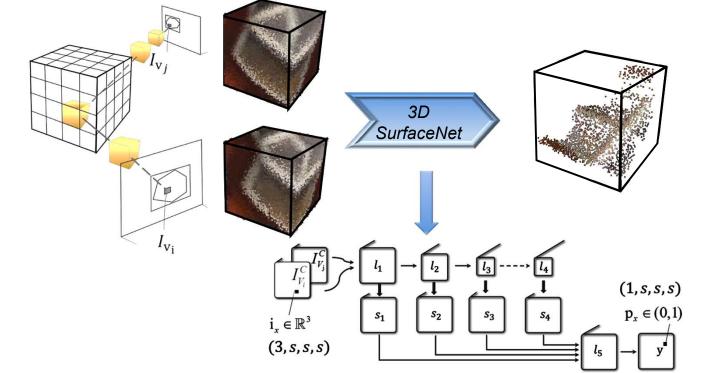
- Introduction to MVS
 - Existing works
- SurfaceNet
 - 2 views case
 - N views case
- Experiment
 - Prepare dataset
- Conclusion

SurfaceNet ---- 2 views case

• pipeline

HKUST

- takes 2 colored voxel cubes from 2 different views as input
- predicts for each voxel a binary occupancy attribute indicating if the voxel is on the surface or not.
- SurfaceNet predicts 2D surface from a 3D voxel space,
- analogous to boundary detection [2], which predicts a 1D boundary from 2D image input.



16

[2] Xie, Saining, and Zhuowen Tu. "Holistically-nested edge detection." Proceedings of the IEEE International Conference on Computer Vision. 2015.

- Introduction to MVS
 - Existing works
- SurfaceNet
 - ♦ 2 views case
 - N views case
- Experiment
 - Prepare dataset
- Conclusion

SurfaceNet ---- N view pairs

- Fuse: average N results from N view pairs.
- Problem: when there are multiple views, how to choose less views to get good 3D model.
 - 50 views \rightarrow 1000+ view pairs
- Solution:

HKUST

- only use the valuable view pairs ranked by **relative importance w**
- w is learned for each view pair based on baseline and the image appearance on both views $(v_i, v_i) = (o(v_i, v_i) + (v_i, v_i)) = (o(v_i, v_i) + (v_i, v_i))$

$$w_C^{(v_i,v_j)} = r\left(\theta_C^{(v_i,v_j)}, d_C^{(v_i,v_j)}, e(C, I_{v_i})^T, e(C, I_{v_i})^T\right)$$

$$d_C^{(v_i,v_j)} = \|e(C, I_{v_i}) - e(C, I_{v_i})\|_2$$

• Weighted average the results \mathbf{p} from different view pairs

$$p_x = \frac{\sum_{(v_i, v_j) \in \mathbf{V}_C} w_C^{(v_i, v_j)} p_x^{(v_i, v_j)}}{\sum_{(v_i, v_j) \in \mathbf{V}_C} w_C^{(v_i, v_j)}}$$

SurfaceNet ---- N view pairs

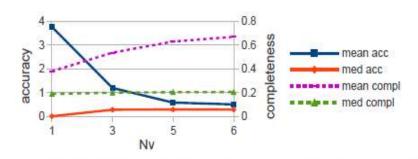
• Compare:

- (left) Randomly select 5 view pairs out of 1000+.
- (**Right**) Select 5 view pairs with top **w** value
- (**Right**) is much complete with little accuracy drop than (left).

Random model 9	mean accuracy	median accuracy	mean completeness	median completeness
Randomly select view pairs (Left)	0.421	0.268	16.611	1.219
Select top view pairs based on <mark>relative</mark> importance rank (Right)	2.777	0.364	4.669	0.281

SurfaceNet ---- N view pairs

- Quantitative and qualitative evaluation of N
 - the lower, the better
 - Only take the best view pair, N = 1:
 - Very noisy inaccurate results
 - N = 3:
 - The accuracy is substantially improved.
 - N = 5 + :
 - The accuracy slightly improves.
 - Time consumption linear increases.
 - Trade off choice: N = 5

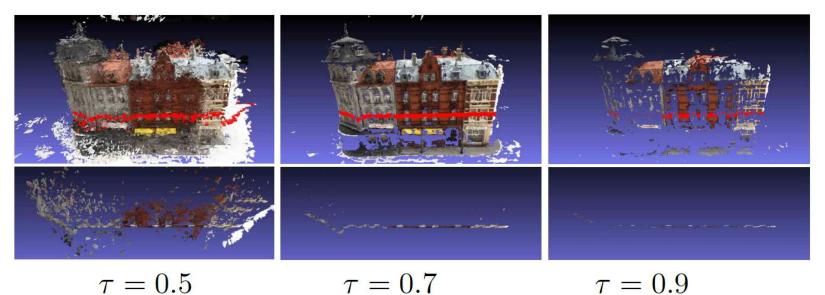


$$N_v =$$

 $N_v = 6$

HKUST SurfaceNet ---- N view pairs

- **Binarization**: converts the probability map
 - **Uniform** threshold:



• Adaptive threshold: Since the neighboring cubes are helpful for the binarization.

$$E(\tau_C) = \sum_{C' \in \mathcal{N}(C)} \psi \left(S^C(\tau_C), S^{C'}(\tau_{C'}) \right) \qquad \tau_C \in [0.5, 1]$$

$$\psi(S^C, S^{C'}) = \sum_{x \in C \cap C'} (1 - s_x) s'_x + s_x (1 - s'_x) - \beta s_x s'_x$$

21

- Introduction to MVS
 - Existing works
- SurfaceNet

- ♦ 2 views case
- N views case
- Experiment
 - Prepare dataset
 - Comparison
- Conclusion

Experiments: Prepare Dataset

• Use the DTU dataset [3]

HKUST

- To our knowledge, [3] is the only large scale MVS benchmark.
- Contain 80 different scenes seen from 49 camera positions.
- Limited by the GPU memory, the cube size is set to (32, 32, 32)
 - The cubes are randomly cropped on the training model surface.
 - Data augmentation: rotation and translation

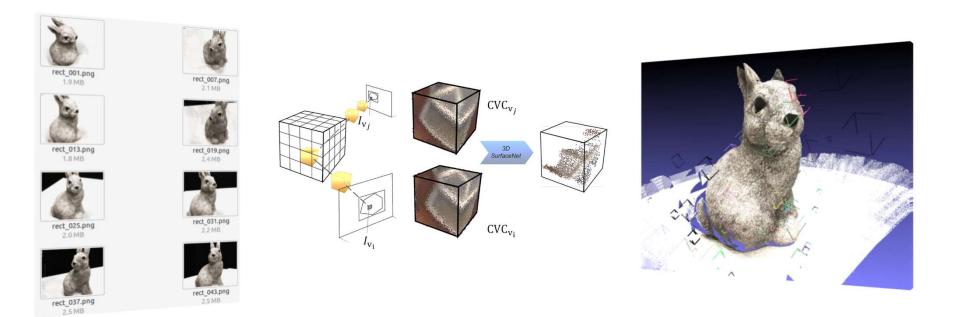
[3] Aanæs, Henrik, et al. "Large-scale data for multiple-view stereopsis." International Journal of Computer Vision 120.2 (2016): 153-168.

Experiments: Prepare Dataset

- {Net_inputs, Net_gt} pairs for training:
 - Posed images \rightarrow CVCs

HKUST

• Laser scanned 3D model \rightarrow gt (surface points in cube)



- Introduction to MVS
 - Existing works
- SurfaceNet

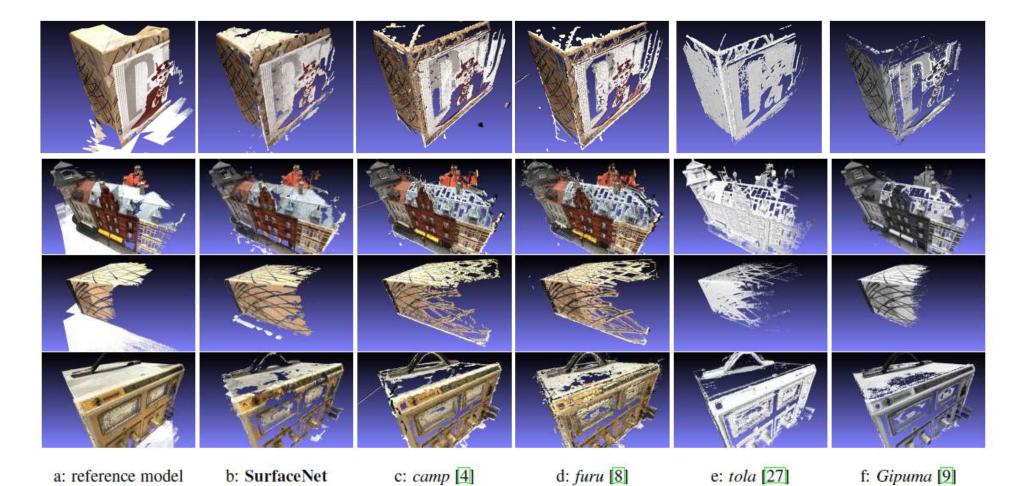
HKUST

- ♦ 2 views case
- N views case

• Experiment

- Prepare dataset
- Comparison
- Conclusion

Experiments: Compare with others



[3] N. D. Campbell, G. Vogiatzis, C. Hern andez, and R. Cipolla. Using multiple hypotheses to improve depth-maps for multi-view stereo. In European Conference on Computer Vision, pages 766–779. Springer, 2008.

[7] Y. Furukawa and J. Ponce. Accurate, dense, and robust mul-tiview stereopsis. IEEE transactions on pattern analysis and machine intelligence, 32(8):1362–1376, 2010.

[8] S. Galliani, K. Lasinger, and K. Schindler. Massively parallel multiview stereopsis by surface normal diffusion. In Proceedings of the IEEE International Conference on Computer Vision pages 873– 873–881, 2015.

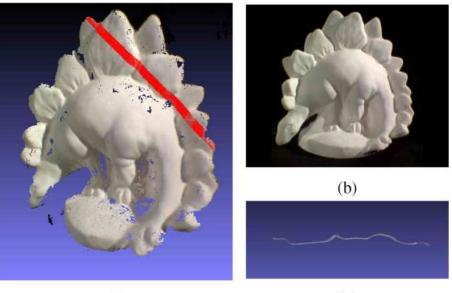
[24] E. Tola, C. Strecha, and P. Fua. Efficient large-scale multi-view stereo for ultra high-resolution image sets. Machine Vision and Applications, pages 1–18, 2012.

Experiments: Compare with others

- The structured output surface leads better completeness around the less textured regions compared with other methods.
- SurfaceNet outperforms camp [3] and furu [7]
- It's comparable to *tola* [24] and *Gipuma* [8].

Table 3: Comparison with other methods. The results are reported for the test set consisting of 22 models.

mothe de (mm)	mean	med	mean	med
methods (mm)	acc	acc	compl	compl
<i>camp</i> [4]	0.834	0.335	0.987	0.108
furu [8]	0.504	0.215	1.288	0.246
tola [27]	0.318	0.190	1.533	0.268
Gipuma [9]	0.268	0.184	1.402	0.165
$s = 32, \tau = 0.7, \gamma = 0\%$	1.327	0.259	1.346	0.145
$s = 32, \tau = 0.7, \gamma = 80\%$	0.779	0.204	1.407	0.172
$s=32,$ adapt $\beta=6,$ $\gamma=80\%$	0.546	0.209	1.944	0.167
$s = 64, \tau = 0.7, \gamma = 0\%$	0.625	0.219	1.293	0.141
$s = 64, \tau = 0.7, \gamma = 80\%$	0.454	0.191	1.354	0.164
$s=64,$ adapt $\beta=6,$ $\gamma=80\%$	0.307	0.183	2.650	0.342



(a)

(c)

Figure 9: (a) Reconstruction using only 6 images of the dinoSparseRing model in the Middlebury dataset [21]. (b) One of the 6 images. (c) Top view of the reconstructed surface along the red line in (a).

[3] N. D. Campbell, G. Vogiatzis, C. Hern andez, and R. Cipolla. Using multiple hypotheses to improve depth-maps for multi-view stereo. In European Conference on Computer Vision, pages 766–779. Springer, 2008.

[7] Y. Furukawa and J. Ponce. Accurate, dense, and robust mul-tiview stereopsis. IEEE transactions on pattern analysis and machine intelligence, 32(8):1362–1376, 2010.

[8] S. Galliani, K. Lasinger, and K. Schindler. Massively parallel multiview stereopsis by surface normal diffusion. In Proceedings of the IEEE International Conference on Computer Vision pages 873–881, 2015.

[24] E. Tola, C. Strecha, and P. Fua. Efficient large-scale multi-view stereo for ultra high-resolution image sets. Machine Vision and Applications, pages 1–18, 2012.

- Introduction to MVS
 - Existing works
- SurfaceNet

- ♦ 2 views case
- N views case
- Experiment
 - Prepare dataset
 - ♦ Comparison
- Conclusion

- Presented the first end-to-end learning framework for MVS.
- To effectively encode the camera parameters, we introduced a novel representation: *colored voxel cubes* for each viewpoint.
- Our qualitative and quantitative evaluation on the DTU dataset demonstrated that our network can accurately reconstruct the surface of 3D objects. While our method is currently comparable to the state-of-the-art.
- 3D reconstruction stages
 - Manual labor → analog implementation → silhouettes projection method → graph
 cut era → depth fusion → deep learning era

Ç	surfac	enet	Pull requests issues Marketplace Explore		+ - 📉 -
			3 repository results		
	Code	192			
	Commits	19	mjiUST/ <i>SurfaceNet</i>	Python	★ 22
	Issues	7	M. Ji, J. Gall, H. Zheng, Y. Liu, and L. Fang. <i>SurfaceNet</i> : An End-to-end 3D Neural Network for		
	Topics		Multiview Stereopsis		
	Wikis		Updated on 28 Nov 2017		

Q&A