## 适合等几何分析的样条工具

University of Science and Technology of China Xin Li (李新) Email: lixustc@ustc.edu.cn Phone: 0551-63607202

### Galerkin Projection

• To solve *u*, such that: Lu = f in  $\Omega$ with the boundary conditions u = 0 on  $\Gamma_D$  and  $\langle \nabla u, n \rangle = h$  on  $\Gamma_N$ Here *L* is a second order elliptic operator on the Lipschitz domain  $\Omega$ 

• Week form:

a(u,v) = l(v) for all  $v \in V := \{u \in H^1(\Omega), u|_{\Gamma_D} = 0\}$ 

### Galerkin Projection

- Replace the infinite space V with the finite dimensional space  $S = span\{\phi_i, i = 1, 2, ..., n\}$
- Numerical solution  $u_h = \sum_{i=1}^n q_i \phi_i$
- The coefficients are from a linear system Aq=b,

$$A_{i,j} = a(\phi_j, \phi_i), b_i = l(\phi_i)$$

### Collocation

D

Lu = f in  $\Omega$ 



 $Lu_h(\alpha_j) = f(\alpha_j), j = 1, 2, ..., n$ 

Isogeometric analysis

• The geometry functions:  $G(\xi) = x(\xi) = \sum_{j=1}^{n} N_j(\xi) x_j$ • The basis functions:

$$\phi_i = N_i \circ G^{-1}(x)$$



### Isogeometric Analysis

- Based on technologies (e.g., NURBS, subdivision,T-splines, etc.) from computational geometry used in:
  - Design
  - Animation
  - Graphic art
  - Visualization



- Includes standard FEA as a special case, but offers other possibilities:
  - Precise and efficient geometric modeling
  - Simplified mesh refinement
  - Smooth basis functions with compact support
  - Superior approximation properties
  - Integration of design and analysis



### Outline

### B-pline-based IGA: the advantages

# T-Spline-based IGA: From design to analysis

## B-spline based IGA

### Bézier curves



Pierre Bézier (1910.9.1-1999.11.25)



### Bézier curves

### Bézier curve

▶ A degree n Bézier curve:

$$\mathbf{R}(t) = \sum_{i=0}^{n} \mathbf{R}_{i} B_{i,n}(t) \qquad 0 \le t \le 1$$
$$B_{i,n}(t)$$
 are Bernstein basis functions:

$$B_{i,n}(t) = C_n^i (1-t)^{n-i} t^i$$
$$C_n^i = n! / (i!(n-i)!)$$

{





### A NURBS Curve: Automatically control the continuity





### **Properties:**

- ✓ Partition of unity
- ✓ Pointwise nonnegativity
- ✓ Linear independence
- ✓ Compact support
- ✓ Control of continuity
- ✓ Refineability

### B-spline surfaces



### Robustness

D

- NURBS produce valid discretizations under increased control mesh distortion
- Using higher-order functions one may relax the requirements on the quality of the control mesh



S. Lipton a, J.A. Evans , Y. Bazilevs , T. Elguedj , T.J.R. Hughes, Robustness of isogeometric structural discretizations under severe mesh distortion, CMAME 2010.







 $\mathcal{C}^0$  lin.

 $\mathcal{C}^2$  cub.





 $\theta=720^\circ$ 



 $\theta=360^{\rm o}$ 

 $\theta=795^{\rm o}$ 



 $\theta=907^\circ$ 





# structural vibrations of an elastic fixed–fixed rod of unit length

$$u_{xx} + \varpi^2 u = 0, x \in ]0,1[,$$
  

$$u(0) = u(1) = 0,$$
  
exact natural frequencies  $\varpi_n = n\pi$ 

J.A. Cottrell, T.J.R. Hughes, A. Reali, Studies of refinement and continuity in isogeometric structural analysis, CMAME 2007.



### Automobile crashworthiness



## NREL 5 MW Blade Material Design Distinct material zones Layout of materials in each material zone





| Stack Usage      | Stack ID                                                                                                                                                     | Stack Name                                                                                                                                                                                                                                                                                 | Material                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1, 2, 3, 2       | 1                                                                                                                                                            | Gelcoat                                                                                                                                                                                                                                                                                    | Gelcoat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1, 2, 3, 7, 2    | 2                                                                                                                                                            | Triax Skins                                                                                                                                                                                                                                                                                | SNL Triax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1, 2, 3, 4, 2    | 3                                                                                                                                                            | Triax Root                                                                                                                                                                                                                                                                                 | SNL Triax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1, 2, 3, 2       | 4                                                                                                                                                            | UD Carbon                                                                                                                                                                                                                                                                                  | UD Carbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1, 2, 3, 5, 6, 2 | 5                                                                                                                                                            | UD Glass TE                                                                                                                                                                                                                                                                                | E-LT-5500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1, 2, 3, 6, 2    | 6                                                                                                                                                            | TE Foam                                                                                                                                                                                                                                                                                    | Foam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 8, 9, 8          | 7                                                                                                                                                            | LE Foam                                                                                                                                                                                                                                                                                    | Foam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                  |                                                                                                                                                              | Saertex                                                                                                                                                                                                                                                                                    | Saertex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                  | 9                                                                                                                                                            | SW Foam                                                                                                                                                                                                                                                                                    | Foam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                  | Stack Usage         1, 2, 3, 2         1, 2, 3, 7, 2         1, 2, 3, 4, 2         1, 2, 3, 2         1, 2, 3, 5, 6, 2         1, 2, 3, 6, 2         8, 9, 8 | Stack Usage         Stack ID           1, 2, 3, 2         1           1, 2, 3, 7, 2         2           1, 2, 3, 4, 2         3           1, 2, 3, 4, 2         4           1, 2, 3, 5, 6, 2         5           1, 2, 3, 6, 2         6           8, 9, 8         7           8         9 | Stack Usage         Stack ID         Stack Name           1, 2, 3, 2         1         Gelcoat           1, 2, 3, 7, 2         2         Triax Skins           1, 2, 3, 7, 2         3         Triax Root           1, 2, 3, 4, 2         3         Triax Root           1, 2, 3, 2         4         UD Carbon           1, 2, 3, 5, 6, 2         5         UD Glass TE           1, 2, 3, 6, 2         6         TE Foam           8, 9, 8         7         LE Foam           8         Saertex         9 |

### Thickness distributions of materials



### Classical laminated shell theory

$$\mathbf{K}_{\text{exte}} = \int_{h_{\text{th}}} \mathbf{\bar{C}} d\xi_3 = \sum_{k=1}^n \mathbf{\bar{C}}_k t_k$$
$$\mathbf{K}_{\text{coup}} = \int_{h_{\text{th}}} \xi_3 \mathbf{\bar{C}} d\xi_3 = \sum_{k=1}^n \mathbf{\bar{C}}_k t_k \mathbf{\bar{z}}_k$$
$$\mathbf{K}_{\text{bend}} = \int_{h_{\text{th}}} \xi_3^2 \mathbf{\bar{C}} d\xi_3 = \sum_{k=1}^n \mathbf{\bar{C}}_k \left( t_k \mathbf{\bar{z}}_k^2 + \frac{t_k^3}{12} \right)$$

#### Credits: Austin Herrema, Ming-Chen Hsu

### Mesh Convergence: IGA vs. FEM

- Model verification mesh convergence
  - Linear buckling analysis

40

 Investigation of the convergence of the 1<sup>st</sup> eigenvalue (buckling-inducing load multiplier)



| Difference from nominal, % | 35 | ANSYS Shell 181, 4-hode shell, degree 1 |                            |        |        |
|----------------------------|----|-----------------------------------------|----------------------------|--------|--------|
|                            | 30 | IGA KL-Shell NURBS, degree 3            | L                          |        |        |
|                            | 25 |                                         |                            | Ref.   | IGA    |
|                            | 20 | SNL ref.                                | Buckling<br>Load<br>Factor | 1.63   | 1.56   |
|                            | 15 |                                         |                            |        |        |
|                            | 10 |                                         | Root                       |        |        |
|                            | 5  |                                         | Bending                    | 22,740 | 23,723 |
|                            | 0  |                                         | Moment<br>(kN-m)           |        |        |
|                            |    | Number of Elements                      | . ,                        |        |        |

Ref: Resor BR. Definition of a 5MW/61.5m wind turbine blade reference model. *Technical Report SAND2013-2569*,Sandia National Laboratories, Albuquerque, NM, 2013.Credits: Austin Herrema, Ming-Chen Hsu

### Aortic Valve closure



"Patient-specific isogeometric structural analysis of aortic valve closure," S. Morganti, F. Auricchio, D. Benson, F.I. Gambarin, S. Hartmann, T.J.R.H., A. Reali, *CMAME*, 2015.

### Solution times for comparable accuracy

| Analysis | <b># Nodes</b> | # CPUs | Time step | #<br>Increments | Total<br>analysis<br>time |
|----------|----------------|--------|-----------|-----------------|---------------------------|
| IGA      | 762            | 12     | 2.30e-07  | 4347390         | lh I5m                    |
| FEA      | 153646         | 12     | 2.65e-08  | 37787314        | 550h 23m                  |

Why is IGA so much faster than traditional FEA?

- 1. Much more accurate per degree of freedom.
- 2. Efficient dynamics, e.g., large time steps.
- 3. Quality of contact surface provided by smooth geometry and smooth basis functions.

Navier-Stokes-Korteweg Equations

• Liquid-vapor two-phase flows

• Third-order spatial derivatives require smooth basis function

### **Three-dimensional Boiling**



J. Liu, C.M. Landis, H. Gomez, and T.J.R. Hughes, "Liquid-Vapor Phase Transition: Thermomechanical Theory, Entropy Stable Numerical Formulation, and Boiling Simulations." *Computer Methods in Applied Mechanics and Engineering*, 297:476-553, 2015.

## Matrix forming

Consider the mass matrix

$$\mathbb{M} = \{m_{\boldsymbol{i},\boldsymbol{j}}\} = \left\{ \int_{[0,1]^d} c(\boldsymbol{\zeta}) \, \hat{B}_{\boldsymbol{i}}(\boldsymbol{\zeta}) \, \hat{B}_{\boldsymbol{j}}(\boldsymbol{\zeta}) \, d\boldsymbol{\zeta} \right\}$$

Gauss Quadrature (GQ) (or Generalized GQ)  
$$m_{i,j} \approx \mathfrak{Q}^{\mathrm{GQ}}(c\hat{B}_i\hat{B}_j) = \sum_q w_q^{\mathrm{GQ}}c(x_q^{\mathrm{GQ}})\hat{B}_i(x_q^{\mathrm{GQ}})\hat{B}_j(x_q^{\mathrm{GQ}})$$

weighted quadrature (WQ)

$$m_{i,j} = \int_{\hat{\Omega}} c(\boldsymbol{\zeta}) \, \hat{B}_j(\boldsymbol{\zeta}) \, (\hat{B}_i(\boldsymbol{\zeta}) d\boldsymbol{\zeta}) \approx \mathfrak{Q}_i^{WQ}(c\hat{B}_j) = \sum_q w_{q,i}^{WQ} c(x_q^{WQ}) \hat{B}_j(x_q^{WQ})$$

F. Calabro, G. Sangalli, M. Tani, Fast formation of isogeometric Galerkin matrices by weighted quadrature, CMAME 2017.





cost for WQ =  $O(N_{\mathsf{DOF}}p^{d+1})$ 

cost for SGQ =  $O(N_{\mathsf{DOF}}p^{3d})$ 



\_ \_

## Variational Collocation

$$u_{h} = \sum_{i=1}^{n} q_{i} \phi_{i}$$
$$Lu_{h}(\alpha_{j}) = f(\alpha_{j}), j = 1, ..., n,$$

- IGA collocation, the rate of convergence is different for odd and even degrees;
- For NURBS, there exist collocation sites that produce the Galerkin solution exactly;

Hector Gomez, Laura De Lorenzis, The variational collocation method, CMAME 2017.

## **3D** parameterization



Na Lei, Xiaopeng Zheng, Jian Jiang, Yu-Yao Lin, David Xianfeng Gu, Quadrilateral and Hexahedral Mesh Generation Based on Surface Foliation Theory, CMAME 2017.

### T-splines-based IGA

From design to analysis

### Why T-splines



### Why is meshing so time consuming?



Honda B-pillar

### Why is it so time consuming?

Graphics



### Data structure

1280 trimmed surfaces, that are not watertight


# T-spline-based technology

- Watertight;
- Editable;
- Isogeometric;
- NURBS compatible;



T.W. Sederberg, Finnigan, Xin Li, etal , Watertight trimmed NURBS, Siggraph 2008.





The T-Spline technology addresses some important limitations that are inherent in conventional NURBS surfaces. T-Splines are based on solid mathematical principles. An important practical consideration is that T-Splines are forward and backward compatible with NURBS.

--Dr. Rich Riesenfeld, Founder of B-splines in CAD

The technology acquisition will strengthen our Digital Prototyping portfolio with more flexible free-form modeling and will help achieve even closer integration between industrial design and engineering workflows.

-- Buzz Kross, senior vice president of Autodesk

## Trimming technology for IGA

- Other T-spline technology can also handle the trimming problem;
  - > PHT, HB, LR splines;
- Immersed boundary method for IGA
  - Cannot directly contact with CAD
- ► B++ spline method

# Locally refinable splines

- Polynomial spline spaces over T-meshes;
- Hierarchical B-splines;
- T-splines;
- LR B-splines;

#### Polynomial spline spaces over T-meshes



 $S(m, n, \alpha, \beta, T) = \{f(s, t) \in C^{\alpha, \beta}(\Omega) : s \mid_{\phi} \in P^{m, n}\}$ T:t-mesh,  $\phi$ : a face,  $C^{\alpha, \beta}(\Omega)$ : continuous with order  $\alpha$  and  $\beta$  in s and t directions





Given a T-mesh in the parametric domain

Compute the dimension of the space





图 3.11: 拟合igea的开模型 Application

Construct the basis functions



Figure: Locally Refined splines

Þ

#### **T**-splines



Two approaches for local refinement splines

- space-based:
  - ► PHT
  - Difficult to compute the dimension and to construct the basis
- Blending functions-based
  - T-splines;
  - HB-splines;
  - LR B-splines;
  - Difficult to prove any mathematical properties;

Requirement for T-splines in IGA

Find a class of T-meshes such that

Linear Independent:

$$\sum_{i=1}^{n} C_i T_i(\xi) = 0 \longrightarrow C_i = 0$$

▶ Nesting: Find the condition for T<sup>1</sup> and T<sup>2</sup> such that

$$span\{T_i^1(\xi)\} \subset span\{T_i^2(\xi)\}$$

• Completeness: Given a piecewise polynomial function  $f(\xi)$ , check

 $f(\xi) \in span\{T_i(\xi)\}$ 



Linear independence of the T-spline blending functions associated with some particular T-meshes

A. Buffa, D. Cho, G. Sangalli

Computer Methods in Applied Mechanics and Engineering Volume 199, Issues 23-24, 15 April 2010, Pages 1437-1445

#### Definition



Xin Li, T.W.Sederberg, Jianmin Zheng, T. Hughes, M. A. Scott. On linear independency of Tsplines blending functions, CAGD, 29(1): 63-76, 2012.

- M. A. Scott, Xin Li, T.W.Sederberg, T, Hughes. Local refinement of Analysis-suitable T-splines, CMAME, Volumes 213-216, 1-3,206-222, 2012.
- Xin Li, M.A. Scott. Analysis-suitable T-splines: characterization, refineability, and approximation, M3AS, Vol. 24, No. 06, 1141-1164, 2014.

### T-splines-based IGA

- Backwards compatible with NURBS
- Used in design
- Higher-order smoothness
- Partition of unity
- Locally refinement
- Watertight

- Simply implemented in FEA codes
- Linearly independent
- Affine covariance
- Watertight
- Locally refinement
- Optimal convergence

# Analysis-suitable T-splines

### **AS** T-splines

- Academic Development
  - Prof. A. Buffa: Dual Basis
  - Prof. D. Zorin: T-spline subdivision
  - Prof. G. Zavarise: Local refinement
  - Prof. D. Cho: Non-polynomial T-splines
- Applications: crack, fracture, wave, electromagnetics
  - Hughes,
  - T. Rabczuk,
  - A.Buffa,
  - Y. Bazilevs,

## Not AS T-splines

D



#### Not AS T-splines



#### AS++ T-splines

#### Definition

A T-mesh is called an analysis-suitable++ T-mesh (for short, AS++ T-mesh) if and only if:

• For any two T-junctions  $\mathbf{T}_i$ ,  $\mathbf{T}_j$  which are not parallel, denote  $V = ext_2^f(\mathbf{T}_i) \cap ext_2^f(\mathbf{T}_j)$ , then either  $ext_2^f(\mathbf{T}_i) \cap ext_2^f(\mathbf{T}_j) = \emptyset$  (no *V* exists) or for any  $\mathbf{V}_i$ ,  $V \notin VK(\mathbf{V}_i)$ ;

2 
$$T_{ext} = T_{elem}$$
.

An AS++ T-spline is a T-spline defined on an AS++ T-mesh.

- Xin Li, Jingjing Zhang. AS++ T-splines: linear independence and approximation, CMAME, 2018.
- Jingjing Zhang, Xin Li. Local refinement of Analysis-suitable++ T-splines, CMAME.
- Xin Li, Characterization of Analysis-suitable++ T-splines, Prepared to submite to M3AS.

#### Property

#### Theorem

The T-splines producing by insertion control points from any AS++ T-splines using any existing local refinement algorithm are still AS++ T-splines.

- Oreate the basic shape:
  - From primitives or lines:
  - From a set of curves: lofting or skinning;
  - From surfaces: NURBS or meshes;
- Editing tools:
  - Local refinement;
  - Extrusion (Adding star points and local refinement);
  - Merging (local refinement and adding star points);
  - etal.
- In the editing part, the T-junctions are introduced by local refinement algorithm







- Include AS T-splines as a special case;
- A class of T-spline poss all the mathematics properties of AS T-splines except the locally linear independence;
- Poss the geometric modeling ability (no need conversion to analysis) from T-splines with a less propagation local refinement algorithm;

### T-splines in industry

- Autodesk T-Splines Plug-in for Rhino
- Autodesk Products
  - Autodesk Fusion 360
  - Autodesk SketchBook Pro
  - Autodesk Alias Design.
  - Autodesk Inventor
  - Autodesk Showcase

#### Time: 0.000000 s











# Extraordinary points



#### Extraordinary points



# Red = 10Black = 1



#### Eigen-polyhedron-based technology



Xin Li, Finnigan, T. W. Sederberg, G<sup>1</sup> Non-Uniform Catmull-Clark Surfaces, Siggraph 2016.



#### Conclusion

- Isogeometric analysis is very promising approach for analysis both on the efficiency and stability;
- T-splines based IGA makes several very important contributions for design-through-analysis process;
  - Spline technology is well done for currently;
  - Spline-based IGA algorithm still needs lots of work;
  - Trimming NURBS conversion still needs more consideration for industry application;
  - Volumetric parameterization;
  - Can IGA suitable for computer graphics?

#### From mesh to T-splines

D



MARCEL CAMPEN and DENIS ZORIN, Similarity Maps and Field-Guided T-Splines: a Perfect Couple, Siggraph 2017.

#### Geometric processing



Fernando de Goes, Mathieu Desbrun, Mark Meyer, Tony DeRose. Subdivision Exterior Calculus for Geometry Processing, Siggraph 2016.

# Thanks!