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Why Monocular?

• Minimum structural requirements
• Widely available sensors
• Applications:

– State estimation for small drones
– Mobile augmented reality
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Why IMU?

• IMU measures:
– Linear acceleration
– Angular velocity

• Pros:
– Almost always available and outlier-free
– Very high-rate measurements
– Very mature technology, widely available at very low cost
– Remarkable performance improvement during aggressive motions

• Cons:
– Noisy sensor, cannot double integrate to obtain position
– Synchronization and inter-sensor calibration requirements
– Observability and numerical stability issues
– Unable to operate when inertial and visual measurements are not in 

the same frame (e.g. on cars or trains)
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Requirements

• Metric scale estimation using only one camera
• Mostly for state estimation (localization), map is sparse
• Robust and smooth odometry – local accuracy
• Loop closure – global consistency
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• MSC-KF (Mourikis and Roumeliotis, 2007)

• OKVIS (Leutenegger, et al., 2015)
– Code: https://github.com/ethz-asl/okvis

• Visual-Inertial ORB SLAM (Mur-Artal and Tardos, 2017)
– No official source code available yet

• Apple ARKit

• Google ARCore

Related work
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Our Solution: VINS-Mono
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Challenges: Monocular Vision

• Scale ambiguity

• Up-to-scale motion estimation and 3D reconstruction 
(Structure from Motion)

λ =?
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• With IMU, scale is observable (via accelerometer), but…
– Requires recovery of initial velocity and attitude (gravity)
– Requires online calibration camera-IMU extrinsic parameters
– Requires multi-observation constraints

v0 =?
g0 =?
Rc
b =?

pcb =?

Short term 
integration of IMU

Challenges: Monocular Visual-Inertial Systems

……

@2018 HKUST Aerial Robotics Group | http://uav.ust.hkSource Code: http://github.com/HKUST-Aerial-Robotics/VINS-Mono



Challenges: Synchronization

• Best: Sensors are hardware-triggered

• OK: Sensors have the same clock (e.g. running on the same system clock or 
have global clock correction) but capture data at different times

• Bad: Sensors have different clocks (e.g. each sensor has its own oscillator) 

IMU

Camera

IMU

Camera
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Challenges: Timestamps

• Timestamp: how the time for each sensor measurement is tagged
• Best: timestamping is done at data capture
• OK: fixed latency for time stamping

– e.g. time is tagged on low-level hardware after some fixed-duration data 
processing, and will not be affected by any dynamic OS scheduling tasks

• Bad: variable latency in time stamping 
– e.g. plug two sensors into USB ports and time stamp according to the PC time. Time 

stamping is affected by data transmission latency from the sensor to PC

Good Bad
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Monocular Visual-Inertial SLAM

• System diagram
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Monocular Visual-Inertial SLAM

• Monocular visual-inertial odometry with relocalization
– For local accuracy
– Achieved via sliding window visual-inertial bundle adjustment
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Monocular Visual-Inertial SLAM

• Global pose graph SLAM
– For global consistency
– Fully integrated with tightly-

coupled re-localization
• Map reuse

– Save map at any time
– Load map and re-localize with 

respect to it
– Pose graph merging
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How to Use IMU?

• IMU integration
– IMU has higher rate than camera
– Cannot estimate all IMU states
– Need to integration IMU measurements 

IMU

Camera

IMU

Camera
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The Bad of IMU Integration in the Global Frame

• IMU integration in world frame
– Requires global rotation at the time of integration

𝒘𝒘

𝒃𝒃𝟎𝟎
𝒃𝒃𝟏𝟏

This Does Not Work!
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World frame



IMU Pre-Integration on Manifold

• IMU integration in the body frame of first pose of interests
– IMU Integration without initialization
– Can use any discrete implementation for numerical integration
– Intuitive: “position” and “velocity” changes in a “free-falling” frame

𝒃𝒃𝟎𝟎
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IMU Pre-Integration on Manifold

• Uncertainty propagation on manifold
– Derive the error state model for the IMU pre-integration dynamics

– Discrete-time implementation

𝒃𝒃𝟎𝟎

𝒃𝒃𝟏𝟏
Bias uncertainty

Covariance matrix for pre-integrated IMU measurements
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IMU Pre-Integration on Manifold

• Jacobian matrices for bias correction
– Also derive the Jacobian of the pre-integrated measurements w.r.t. IMU bias

– And write down the linearized model for bias correction

𝒃𝒃𝟎𝟎
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IMU Pre-Integration on Manifold

• Pre-integrated IMU measurement model
– Describes the spatial and uncertainty relations between two 

states in the local sliding window 

x𝟏𝟏
x𝟐𝟐 x𝟑𝟑

f𝟐𝟐f𝟎𝟎

x𝟎𝟎

k𝟐𝟐
IMU:

Camera:

f𝟑𝟑f𝟏𝟏

k𝟏𝟏
k𝟎𝟎

@2018 HKUST Aerial Robotics Group | http://uav.ust.hkSource Code: http://github.com/HKUST-Aerial-Robotics/VINS-Mono



Vision Front-End

• Simple feature processing pipeline
– Harris corners… 
– KLT tracker...
– Track between consecutive frames
– RANSAC for preliminary outlier removal

• Keyframe selection
– Case 1: Rotation-compensated average feature parallax is larger 

than a threshold
• Avoid numerical issues caused by poorly triangulated features

– Case 2: Number of tracked features in the current frame is less 
than a threshold

• Avoid losing tracking
– All frames are used for optimization, but non-keyframes are 

removed first
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Monocular Visual-Inertial SLAM

• System diagram
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Monocular Visual-Inertial Odometry

• Nonlinear graph optimization-based, tightly-coupled, sliding 
window, visual-inertial bundle adjustment
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• Nonlinear graph-based optimization
– Optimize position, velocity, rotation, IMU biases, inverse feature 

depth, and camera-IMU extrinsic calibration simultaneously:

– Minimize residuals from all sensors

Prior from marginalization

IMU measurement residual Vision measurement residual

Monocular Visual-Inertial Odometry
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Monocular Visual-Inertial Odometry

• IMU measurement residual
– Additive for “position” and “velocity” changes, and biases
– Multiplicative for  incremental rotation
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Monocular Visual-Inertial Odometry

• Vision measurement residual
– Pixel reprojection error
– Inverse depth model, at least 2 observations per feature, first 

observation to define feature direction
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Monocular Visual-Inertial Odometry

• Vision measurement residual
– Spherical camera model
– At least 2 observations per feature
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• Vision measurement residual
– Spherical camera model
– Finding two basis vectors on the tangent plane

• Choose any vector not parallel with �𝑷𝑷𝑙𝑙
𝑐𝑐𝑗𝑗 , e.g. [1 0 0] 

• 𝐛𝐛1 = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛( �𝑃𝑃𝑙𝑙
𝑐𝑐𝑗𝑗 × [1 0 0])

• 𝐛𝐛2 = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛( �𝑃𝑃𝑙𝑙
𝑐𝑐𝑗𝑗 × 𝐛𝐛1)

• Spherical vs. pinhole camera models
– Different ways to define the reprojection error
– Able to model cameras with arbitrary FOV

Tangent plane

Unit sphere

𝑂𝑂𝑐𝑐

�𝑷𝑷𝑙𝑙
𝑐𝑐𝑗𝑗

𝐛𝐛1

𝐛𝐛2
Any vector
e.g. [1 0 0]

Monocular Visual-Inertial Odometry

@2018 HKUST Aerial Robotics Group | http://uav.ust.hkSource Code: http://github.com/HKUST-Aerial-Robotics/VINS-Mono



Review: Synchronization

• Best: Sensors are hardware-triggered

• OK: Sensors have the same clock (e.g. running on the same system clock or 
have global clock correction) but capture data at different times

• Bad: Sensors have different clocks (e.g. each sensor has its own oscillator) 

IMU

Camera

IMU

Camera

@2018 HKUST Aerial Robotics Group | http://uav.ust.hkSource Code: http://github.com/HKUST-Aerial-Robotics/VINS-Mono

IMU

Camera



Review: Timestamps

• Timestamp: how the time for each sensor measurement is tagged
• Best: timestamping is done at data capture
• OK: fixed latency for time stamping

– e.g. time is tagged on low-level hardware after some fixed-duration data 
processing, and will not be affected by any dynamic OS scheduling tasks

• Bad: variable latency in time stamping 
– e.g. plug two sensors into USB ports and time stamp according to the PC time. Time 

stamping is affected by data transmission latency from the sensor to PC

Good Bad
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Monocular Visual-Inertial Odometry

• Temporal calibration
– Calibrate the fixed latency 𝑡𝑡𝑑𝑑 occurred during time stamping
– Change the IMU pre-integration interval to the interval between 

two image timestamps
• Linear incorporation of IMU measurements to obtain the IMU 

reading at image time stamping
• Estimates states (position, orientation, etc.) at image time stamping
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Estimate states at 
these time instances



Monocular Visual-Inertial Odometry

• Vision measurement residual for temporal calibration
– Feature velocity on image plane

• feature 𝑛𝑛 moves at speed  𝑉𝑉𝑙𝑙𝑘𝑘 from image
𝑘𝑘 to 𝑘𝑘 + 1 in short time period [𝑡𝑡𝑘𝑘 , 𝑡𝑡𝑘𝑘+1]

– Visual measurement residual with time offset
• New state variable 𝑡𝑡𝑑𝑑, and estimate states (𝑐𝑐𝑖𝑖′ , 𝑐𝑐𝑗𝑗′) at time stamping
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• Marginalization
– Bound computation complexity to a sliding window of states
– Basic principles:

• Add all frames into the sliding window, and remove non-keyframes after the 
nonlinear optimization

• keep as many keyframes with sufficient parallax as possible
• Maintain matrix sparsity by throwing away visual measurements from non-

keyframes

Monocular Visual-Inertial Odometry
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Monocular Visual-Inertial Odometry

• Marginalization via Schur complement on information matrix

@2018 HKUST Aerial Robotics Group | http://uav.ust.hkSource Code: http://github.com/HKUST-Aerial-Robotics/VINS-Mono



• Solving the nonlinear system
– Minimize residuals from all sensors

– Linearize (to Ax=b), solve, and iterate until time budget is reached
– Ceres Solver (http://ceres-solver.org/)
– Utilize sparse matrix solver

• Qualitative discussion on solution quality
– Numerical stability issues always exist, much worse than vSLAM

• Good: walking and aerial robots
• Bad: ground vehicle moving in 2D
• Failure: constant velocity or pure rotation

– Downgraded performance in distanced scenes

Monocular Visual-Inertial Odometry
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Monocular Visual-Inertial SLAM

• System diagram
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• Speeding up
– The sliding window monocular visual-inertial bundle adjustment 

runs at 10Hz
– Motion-only visual-inertial bundle adjustment to boost up the 

state estimation 30Hz
– IMU forward propagation to boost to 100Hz

States to be solved in 
motion-only bundle
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IMU forward 
propagation

Monocular Visual-Inertial Odometry
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• Motion-only visual-inertial bundle adjustment
– Optimize position, velocity, rotation in a smaller windows, 

assuming all other quantities are fixed

– Prior in cost function is ignored

– Also solved using the Ceres Solver

Monocular Visual-Inertial Odometry
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• Failure detection
– Few trackable feature in the current frame
– Large jumps in nonlinear solver
– Abnormal bias or extrinsic parameter calibration
– Modeled as a standalone module, more to be added…

• Failure recovery
– Just run the initialization again…
– Lots of book keeping…

Monocular Visual-Inertial Odometry
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Monocular Visual-Inertial SLAM

• System diagram
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Estimator Initialization

• Very, very, very important for monocular visual-inertial systems 
• Assumption 1: known camera-IMU extrinsic calibration during 

initialization
– Does not need to be very accurate
– Extrinsic calibration is refined in later nonlinear optimization

• Assumption 2: known accelerometer and gyroscope biases during 
initialization
– Use zero values at power-up
– Use prior values during failure recovery
– Reasonable assumption due to slow varying nature of biases

• Pipeline
– Monocular vision-only SFM in a local window
– Visual-inertial alignment
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Estimator Initialization

• Monocular vision-only structure-from-motion (SfM)
– In a small window (10 frames, 1sec)
– Up-to-scale, locally drift-free position estimates
– Locally drift-free orientation estimates
– Not aligned with gravity
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Estimator Initialization

• Visual-inertial alignment
– Estimates velocity of each frame, gravity vector, and scale

• Note the coordinate frames

IMU Pre-integration

Up-to-scale visual SfM

Align

Metrically aligned VINS

Gravity
b: IMU body frame

c: Camera body frame
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Estimator Initialization

• Visual-inertial alignment
– Linear measurement model

– Solve a linear system
• Scale and rotate the vSfM

IMU Pre-integration

States to be initialized

Known values from vSfM
and extrinsic calibration

Up-to-scale translation 
from vSfM
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Estimator Initialization

• Current issues:
– IMU biases are not initialized

• Gyroscope: obtained from stationary measurements
• Accelerometer: problematic…

– May fail at high altitude scenes due to excessive IMU integration 
time

• Solution: Spline-based initialization, use derivatives instead of 
integration

• T. Liu and S. Shen. High altitude monocular visual-inertial state 
estimation: initialization and sensor fusion. In Proc. of the IEEE 
International Conference on Robotics and Automation (ICRA), 
Singapore, May 2017
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Monocular Visual-Inertial SLAM

• System diagram
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Visual-Inertial SLAM for Autonomous Drone
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• Loop detection
– Describe features by BRIEF 

• Features that we use in the VIO
(200, not enough  for loop detection)

• Extract new FAST features 
(500, only use for loop detection)

– Query Bag-of-Word (DBoW2)
• Return loop candidates

Calonder, Michael, et al. "Brief: Binary robust independent elementary features." Computer Vision–ECCV 2010 (2010): 778-792.
Gálvez-López, Dorian, and Juan D. Tardos. "Bags of binary words for fast place recognition in image sequences." IEEE Transactions on Robotics 28.5 (2012): 
1188-1197.

1. Visual-Inertial Odometry 2. Loop Detection

Loop Closure
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• Feature Retrieving
– Try to retrieve matches for features (200) that are used in the VIO
– BRIEF descriptor match
– Geometric check

• Fundamental matrix test with RANSAC
• At least 30 inliers 

• Output:
– Loop closure frames with known pose 
– Feature matches between VIO frames and loop closure frames

Loop Closure
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Monocular Visual-Inertial SLAM

• System diagram
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2. Loop Detection 3. Relocalization

4. Relocalization with Multiple Constraints

• Relocalization
– Visual measurements for tightly-coupled 

relocalization
• Observation of retrieved features in loop 

closure frames
• Poses of loop closure frames are constant
• No increase in state vector dimension for 

relocalization
• Allows multi-constraint relocalization

VIO residuals

Loop closure vision 
measurement residual
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Monocular Visual-Inertial Odometry with 
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Monocular Visual-Inertial SLAM

• System diagram
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Global Pose Graph SLAM

• 4-DOF pose graph
– Roll and pitch are observable from VIO

• Adding keyframes into pose graph

– Sequential edges from VIO
• Connected with 4 previous keyframes

– Loop closure edges
• Only added when a keyframe is 

marginalized out from the sliding 
window VIO

• Multi-constraint relocalization helps 
eliminating false loop closures

5. Add Keyframe into 
Pose Graph
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5. Add Keyframe into 
Pose Graph

6. 4-DoF Pose Graph
Optimization

Global Pose Graph SLAM

• 4-DOF relative pose residual:

• Minimize the following cost function
– Sequential edge from VIO
– Loop closure edges

• Huber norm for rejection of wrong 
loops

Observable attitude from VIO

Sequential edges

Loop closure edges
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5. Add Keyframe into 
Pose Graph

6. 4-DoF Pose Graph
Optimization

Global Pose Graph SLAM

• More on relocalization
– Relocalization continued on the 

optimized pose graph
– Relocalization and pose graph 

optimization run in different threads 
and in different rate

– Pose graph optimization can be very 
slow for large-scale environments

7. Relocalization in
Optimized Pose 

Graph
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Global Pose Graph SLAM

• Simple strategy for pose graph sparsification
– All keyframes with loop closure constraints will be kept
– Other keyframes that are either too close to its neighbors or 

have very similar orientations will be removed

@2018 HKUST Aerial Robotics Group | http://uav.ust.hkSource Code: http://github.com/HKUST-Aerial-Robotics/VINS-Mono



Monocular Visual-Inertial SLAM

• System diagram
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Visual-Inertial SLAM in Large-Scale Environment

@2018 HKUST Aerial Robotics Group | http://uav.ust.hkSource Code: http://github.com/HKUST-Aerial-Robotics/VINS-Mono



Pose Graph Reuse

• Pose graph saving
– Every Keyframe 

• Index 𝑛𝑛, position �𝒑𝒑𝑖𝑖𝑤𝑤, orientation �𝒒𝒒𝑖𝑖𝑤𝑤, features’ 2D location and 
descriptor 𝐷𝐷(𝑢𝑢,𝑣𝑣,𝑑𝑑𝑛𝑛𝑑𝑑)

• If 𝑛𝑛 loops with 𝑣𝑣, we also save loop index 𝑣𝑣, relative translation �𝑝𝑝𝑖𝑖𝑣𝑣𝑖𝑖 , 
relative yaw angle �𝜑𝜑𝑖𝑖𝑣𝑣

• Pose graph loading
– Build sequential edges

• Connected with 4 previous keyframes
– Build loop closure edges

• According to  loop index 𝑣𝑣, relative translation �𝒑𝒑𝑖𝑖𝑣𝑣𝑖𝑖 and yaw angle �𝜑𝜑𝑖𝑖𝑣𝑣
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Pose Graph Reuse

• Pose graph merging
– Load a previous-built map 
– Build a new map
– Detect loop connections between two maps
– Merge two map by pose graph optimization

@2018 HKUST Aerial Robotics Group | http://uav.ust.hkSource Code: http://github.com/HKUST-Aerial-Robotics/VINS-Mono



Pose Graph Reuse

• Relocalization
– Load previous-built map (aligned with Google Map)
– The camera starts at an unknown position
– Detect similar image view in the map 
– Once loop detected, relocate camera pose

Image from mapCurrent image

Known features 
in the map

Relocalization
Previously built map         Unknown camera position
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Pose Graph Reuse 
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Remarks on Monocular Visual-Inertial SLAM

• Important factors
– Access to raw camera data (especially for rolling shutter cameras)
– Sensor synchronization and timestamps
– Camera-IMU rotation
– Estimator initialization

• Not-so-important factors
– Camera-IMU translation
– Types of features (we use the simplest corner+KLT)
– Quality of feature tracking (outlier is acceptable)

• Failures – need more engineering treatment
– Long range scenes (aerial vehicles)
– Constant velocity (ground vehicle)
– Pure rotation (augmented reality)

• Be aware of computational power requirement
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Remarks on Monocular Visual-Inertial SLAM

• IMU is great!!!
• Feature-based visual-inertial SLAM is very close to done

– Some research work remains:
• Online observability analysis
• Large-scale, long duration operations
• Extreme environments
• Extreme motions

– Big engineering challenges towards mass deployment on different 
devices (Android phones?)

• Intrinsic and extrinsic calibration of IMU, rolling shutter, etc.
• Synchronization issues
• Poor sensors and manufacturing variations
• Insufficient computing power

– Big players are moving in
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Remarks on Monocular Visual-Inertial SLAM

• Real-time dense mapping is interesting
– Very few working implementations
– How to reduce computation?
– Parallel implementation on GPU
– Joint optimization or alternating estimation?
– Textureless and repetitive patterns?
– Combination of learning and geometric-based methods
– Efficient map representation for large-scale environments

@2018 HKUST Aerial Robotics Group | http://uav.ust.hkSource Code: http://github.com/HKUST-Aerial-Robotics/VINS-Mono



Dense Mapping, Trajectory Planning, and Navigation

Y. Lin et al, JFR 2017; W. Ding et al, ICRA2018 @2018 HKUST Aerial Robotics Group | http://uav.ust.hk



Thanks!

Questions?
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