集東调整

章国锋
浙江大学CAD\＆CG国家重点实验室

Bundle Adjustment

- Jointly optimize all cameras and points
$\underset{C_{1}, \ldots C_{N_{c}}, X_{1}, \ldots, X_{N_{p}}}{\arg \min } \sum\left\|\pi\left(X_{i}, C_{j}\right)-x_{i j}\right\|^{2}$

Triggs, B., Mclauchlan, P., Hartley, R., and Fitzgibbon, A. 1999. Bundle adjustment-a modern synthesis. In Proceedings of the International Workshop on Vision Algorithms: Theory and Practice. 298-372.

Nonlinear Least Squares

- Gaussian Newton

$$
\begin{aligned}
& x^{*}=\underset{x}{\arg \min }\|\varepsilon(x)\|^{2} \\
& \varepsilon\left(x^{*}\right)=\varepsilon\left(\hat{x}+\delta_{x}\right) \approx \varepsilon(\hat{x})+J \delta_{x} \\
& J=\partial \varepsilon /\left.\partial x\right|_{x=\hat{x}} \quad \text { Jacobian matrix } \\
& J^{T} \bar{J} \delta_{x}=-J^{T} \varepsilon(\hat{x})
\end{aligned}
$$

first order approximation to Hessian

- Levenberg-Marquardt
$\left(J^{T} J+\mu I\right) \delta x=-J^{T} \varepsilon(\hat{x})$

Sparse Bundle Adjustment

Manolis I. A. Lourakis, Antonis A. Argyros: SBA: A software package for generic sparse bundle adjustment. ACM Trans. Math. Softw. 36(1) (2009)

Sparse Bundle Adjustment

- An simple example
$\square 4$ points
$\square 3$ cameras
\square all points are visible in all cameras

Sparse Bundle Adjustment

$$
J=\left(\begin{array}{ccccccc}
A_{11} & 0 & 0 & B_{11} & 0 & 0 & 0 \\
0 & A_{12} & 0 & B_{12} & 0 & 0 & 0 \\
0 & 0 & A_{13} & B_{13} & 0 & 0 & 0 \\
A_{21} & 0 & 0 & 0 & B_{21} & 0 & 0 \\
0 & A_{22} & 0 & 0 & B_{22} & 0 & 0 \\
0 & 0 & A_{23} & 0 & B_{23} & 0 & 0 \\
A_{31} & 0 & 0 & 0 & 0 & B_{31} & 0 \\
0 & A_{32} & 0 & 0 & 0 & B_{32} & 0 \\
0 & 0 & A_{33} & 0 & 0 & B_{33} & 0 \\
A_{41} & 0 & 0 & 0 & 0 & 0 & B_{41} \\
0 & A_{42} & 0 & 0 & 0 & 0 & B_{42} \\
0 & 0 & A_{43} & 0 & 0 & 0 & B_{43}
\end{array}\right), \varepsilon=\left(\begin{array}{l}
\varepsilon_{11} \\
\varepsilon_{12} \\
\varepsilon_{13} \\
\varepsilon_{21} \\
\varepsilon_{22} \\
\varepsilon_{23} \\
\varepsilon_{31} \\
\varepsilon_{32} \\
\varepsilon_{33} \\
\varepsilon_{41} \\
\varepsilon_{42} \\
\varepsilon_{43}
\end{array}\right)
$$

Sparse Bundle Adjustment

$$
\begin{aligned}
& J^{T} J=\left(\begin{array}{cc}
U & W \\
W^{T} & V
\end{array}\right)=\left(\begin{array}{ccccccc}
U_{1} & 0 & 0 & W_{11} & W_{21} & W_{31} & W_{41} \\
0 & U_{2} & 0 & W_{12} & W_{22} & W_{32} & W_{42} \\
0 & 0 & U_{3} & W_{13} & W_{23} & W_{33} & W_{43} \\
W_{11}^{T} & W_{12}^{T} & W_{13}^{T} & V_{1} & 0 & 0 & 0 \\
W_{21}^{T} & W_{22}^{T} & W_{23}^{T} & 0 & V_{2} & 0 & 0 \\
W_{31}^{T} & W_{32}^{T} & W_{33}^{T} & 0 & 0 & V_{3} & 0 \\
W_{41}^{T} & W_{42}^{T} & W_{43}^{T} & 0 & 0 & 0 & V_{4}
\end{array}\right) \\
& U_{j}=\sum_{i=1}^{4} A_{i j}^{T} A_{i j}, V_{i}=\sum_{j=1}^{3} B_{i j}^{T} B_{i j}, W_{i j}=A_{i j}^{T} B_{i j}
\end{aligned}
$$

Sparse Bundle Adjustment

$$
\begin{aligned}
& J^{T} J \delta_{x_{x}}^{1}=-J^{T} \varepsilon \\
& \quad \delta_{x}=\binom{\delta_{C}}{\delta_{X}}=\left(\begin{array}{lllllll}
\delta_{C_{1}}^{T} & \delta_{C_{2}}^{T} & \delta_{C_{3}}^{T} & \delta_{X_{1}}^{T} & \delta_{X_{2}}^{T} & \delta_{X_{3}}^{T} & \delta_{X_{4}}^{T}
\end{array}\right)^{T}
\end{aligned}
$$

Sparse Bundle Adjustment

$$
\begin{aligned}
J^{T} J \delta_{x} & =-\overline{-}_{-}^{T} \underline{\varepsilon}_{1}^{T} \\
J^{T} \varepsilon & =\binom{\varepsilon_{C}}{\varepsilon_{X}}=\left(\begin{array}{llllll}
\varepsilon_{C_{1}}^{T} & \varepsilon_{C_{2}}^{T} & \varepsilon_{C_{3}}^{T} & \varepsilon_{X_{1}}^{T} & \varepsilon_{X_{2}}^{T} & \varepsilon_{X_{3}}^{T}
\end{array} \varepsilon_{X_{4}}^{T}\right)^{T} \\
\varepsilon_{C_{j}} & =\sum_{i=1}^{4} A_{i j}^{T} \varepsilon_{i j} \\
\varepsilon_{X_{i}} & =\sum_{j=1}^{3} B_{i j}^{T} \varepsilon_{i j}
\end{aligned}
$$

Sparse Bundle Adjustment

$J^{T} J \delta_{x}=-J^{T} \varepsilon$
$\left(\begin{array}{cc}U & W \\ W^{T} & V\end{array}\right)\binom{\delta_{C}}{\delta_{X}}=-\binom{\varepsilon_{C}}{\varepsilon_{X}}$
$\left(\begin{array}{cc}U-W V^{-1} W^{T} & 0 \\ W^{T} & V\end{array}\right)\binom{\delta_{C}}{\delta_{X}}=-\binom{\varepsilon_{C}-W V^{-1} \varepsilon_{X}}{\varepsilon_{X}}$
$S=U-W V^{-1} W^{T}$
Schur Complement
$S \delta_{C}=-\left(\varepsilon_{C}-W V^{-1} \varepsilon_{X}\right) \quad$ Compute cameras first (\# cameras $\ll \#$ points)
$V \delta_{X}=-\varepsilon_{X}-W^{T} \delta_{C} \quad$ back substitution for points

Sparse Bundle Adjustment

- In general, NOT all points are visible in all cameras

$$
U_{j}=\sum_{i=1}^{4} A_{i j}^{T} A_{i j}, V_{i}=\sum_{j=1}^{3} B_{i j}^{T} B_{i j}, W_{i j}=A_{i j}^{T} B_{i j}
$$$A_{i j}=B_{i j}=0$ if j-th points is invisible (or not matched) in j-th camera

\square More sparse structure, more speed-up

Related Works

- Hierarchical BA
\square Steedly et al. 2003, Snavely et al. 2008, Frahm et al. 2010
- Segment-based BA
\square Zhu et al. 2014, Zhang et al. 2016 (ENFT)
- Incremental BA
\square Kaess et al. 2008 (iSAM), Kaess et al. 2011 (iSAM2), Indelman et al. 2012 (iLBA), lla et al. 2017 (SLAM++), Liu et al. 2017 (EIBA)
- Parallel BA
\square Ni et al. 2007, Wu et al. 2011 (PBA)

Segment-based Bundle Adjustment

Zhang G, Liu H, Dong Z, et al. Efficient non-consecutive feature tracking for robust structure-from-motion[J]. IEEE Transactions on Image Processing, 2016, 25(12): 5957-5970.

The Difficulties for Large-Scale SfM

- Global Bundle Adjustment
\square Huge variables
\square Memory limit
\square Time-consuming
- Iterative Local Bundle Adjustment
\square Large error is difficult to be propagated to the whole sequence.
\square Easily stuck in a local optimum.
- Pose Graph Optimization
\square May not sufficiently minimize the error.

Segment-based Progressive SfM

- Split a long sequence to multiple short sequences.
- Perform SfM for each sequence and align them together.
- Detect the "split point" and further split the sequence if the reprojection error is large.
- The above procedure is repeated until the error is less than a threshold.

Segment-based Progressive SfM

- Split Point Detection
\square Best minimize the reprojection error w.r.t. a, i.e. steepest descent direction

$$
g_{k}=\sum_{i=1 \cdots N_{k}} A_{i}^{T} e_{i} \quad \begin{aligned}
& A_{i}=\partial \pi\left(P_{k} X_{i}\right) / \partial a_{k} \\
& e_{i}=\mathbf{x}_{i}-\pi\left(P_{k} X_{i}\right)
\end{aligned}
$$

\square The inconsistency between two consecutive frames

$$
C(k, k+1)=\arccos \frac{g_{k}^{T} \cdot g_{k+1}}{\left\|g_{k}\right\| \cdot\left\|g_{k+1}\right\|}
$$

Split Point Detection

SFM on Garden Dataset

6段长视频序列，将近 10 万帧，特征匹配 74 分钟， SfM 求解 16 分钟（单线程），平均17．7fps
VisualSFM：SfM求解 57 分钟（GPU加速）

Comparison on Garden Dataset

ENFT-SFM

VisualSFM

ORB-SLAM

Comparison with ORB-SLAM in Garden 01 Sequence

ENFT-SLAM
Non-consecutive Track Matching
Segment-based BA

Incremental BA in iSAM2 Based on Bayes Tree

Kaess, M., Johannsson, H., Roberts, R., Ila, V., Leonard, J. J., \& Dellaert, F. (2012). iSAM2: Incremental smoothing and mapping using the Bayes tree. The International Journal of Robotics Research, 31(2), 216-235.

Incremental Bundle Adjustment

In order to benefit from increased accuracy offered by relinearization in batch optimization:
■ Fixed-lag / Sliding-window Approaches

- Keyframe-based Approaches

■ Incremental Approaches (iSAM, iSAM2, our EIBA)

Gaussian Factor Graph

: state: landmark

Kaess, M., Johannsson, H., Roberts, R., Ila, V., Leonard, J. J., \& Dellaert, F. (2012). iSAM2: Incremental smoothing and mapping using the Bayes tree. The International Journal of Robotics Research, 31 (2), 216-235.

Main Ideas of iSAM2

- Reduce fill-in: Use heuristics algorithms CCOLAMD to provide a suboptimal ordering for factorization (finding the optimal is NP-hard).
- Encode with the Bayes tree: Introduce Bayes tree (a.k.a. directed clique tree) to encode the square root information matrix.
- Fluid relinearization: Perform fluid relinearization when adding new factors or updating the linearization points to avoid batch optimization.
- Partial state updates: Perform partial state updates when solving the Bayes in order to update a state variable only when neccesary.

One step: linearization

eliminating the factor graph using the CCOLAMD ordering (e.g. $l_{1}, l_{2}, x_{1}, x_{2}, x_{3}$)

chordal Bayes net

creating Bayes tree in

One step: partial update

starting from the root clique
updating all
variables that change by more than a threshold

Reduce Fill-in

Reordering with CCOLAMD / CHOLMOD

Kaess, M., Ranganathan, A., \& Dellaert, F. (2008). iSAM: Incremental
smoothing and mapping. IEEE Transactions on Robotics, 24(6), 1365-1378.

In Gaussian factor graphs, elimination is equivalent to sparse QR factorization of the measurement Jacobian.

sparse pattern of the
measurement Jacobian

In Gaussian factor graphs, elimination is equivalent to sparse QR factorization of the measurement Jacobian.

sparse pattern of the information matrix

In Gaussian factor graphs, elimination is equivalent to sparse QR factorization of the measurement Jacobian.

No fill-in if we eliminate the factor graph using the elimination ordering
$l_{1}, l_{2}, x_{1}, x_{2}, x_{3}$.
The resulting directed graph is called the chordal Bayes net.
sparse pattern of the square root information matrix

Encode with the Bayes Tree

Encode with the Bayes Tree

A clique of the Bayes tree encoding the conditional density $P\left(l_{1}, x_{1} \mid x_{2}\right)$ l_{1}, x_{1} are called the frontal variables x_{2} is called the separator

Adding New Factors

Fluid relinearization when adding new factors.

- For each variable affected by new factors, remove the corresponding clique and all parents up to the root
- Re-interpret the removed part as a factor graph
- Add the new factors into the resulting factor graph.
- Re-order variables and eliminate the factor graph to recreate a top Bayes tree.
- Insert the orphaned sub-trees back into the new Bayes tree.
add a new factor $f\left(x_{1}, x_{3}\right)$ then update the Bayes tree

remove top of Bayes tree

re-interpret it as a factor graph

Example: adding a factor

add the new factor $f\left(x_{1}, x_{3}\right)$
reorder and re-eliminate to create a new Bayes tree

Example of adding new states and factors Information only propagates upwards.

Example of adding new states and factors Information only propagates upwards.

Kaess, M., Johannsson, H., Roberts, R., Ila, V., Leonard, J. J., \& Dellaert, F (2012). iSAM2: Incremental smoothing and mapping using the Bayes tree. The International Journal of Robotics Research, 31(2), 216-235.

Example of adding new states and factors Information only propagates upwards.

Constrained COLAMD

While adding new states (always along with adding new factors), information only propagates upwards.

1. Force the most recently accessed variables to the end and still provide a good overall ordering.
2. Subsequent updates will then only affect a small part of the tree (the top of the Bayes tree).
3. Efficient in most cases, except for large loop closures.

Fluid Relinearization

ALGORITHM

Fluid relinearization when linearization points change (together with adding new factors).

1. For each affected variable remove the corresponding clique and all parents up to the root.
2. Relinearize all factors required to recreate top.
3. Add cached linear factors from orphans.
4. Re-order variables and eliminate the factor graph to create a new top Bayes tree.
5. Insert the orphaned sub-trees back into the new Bayes tree.

Partial State Updates

ALGORITHM

Starting from the root clique:

1. For current clique:
compute update of frontal variables from the local conditional density.
2. For all variables that change by more than a threshold:
recursively process each descendant containing such a variable.

Efficient Incremental BA

Liu H, Li C, Chen G, et al. Robust Keyframe-based Dense SLAM with an RGBD Camera[J]. arXiv preprint arXiv:1711.05166, 2017.

Revisit Standard BA

- A regular BA function

$$
\sum_{j} \sum_{i \in \mathcal{V}_{j}}\left(\left\|\frac{\pi\left(\mathbf{K}\left(\mathbf{C}_{i} \mathbf{X}_{j}\right)\right)-\mathbf{x}_{j i}}{\sigma_{\mathbf{x}}}\right\|_{\delta}+\left\|\frac{z^{-1}\left(\mathbf{C}_{i} \mathbf{X}_{j}\right)-z_{j i}^{-1}}{\sigma_{z}}\right\|_{\delta}\right)
$$

\mathcal{V}_{j} is the set of cameras in which point j is visible.
■ Convert Huber norm by re-weighting scheme

$$
f=\sum_{j} \sum_{i \in \mathcal{Y}_{j}}\left\|\mathbf{f}_{i j}\left(\mathbf{C}_{i}, \mathbf{X}_{j}\right)\right\|_{2}^{2}
$$

- Linearization
$\mathbf{f}_{i j}\left(\mathbf{C}_{i}, \mathbf{X}_{j}\right) \approx \mathbf{J}_{\mathbf{C}_{i j}} \delta_{\mathbf{C}_{i}}+\mathbf{J}_{\mathbf{X}_{i j}} \delta_{\mathbf{X}_{j}}-\mathbf{e}_{i j} \quad f \approx\|\mathbf{J} \boldsymbol{\delta}-\mathbf{e}\|_{2}^{2} \quad \mathbf{J}$ is $3 n_{x} \times\left(6 n_{c}+3 n_{p}\right)$ Jacobian matrix

■ Solving normal equation $\mathbf{J}^{\top} \mathbf{J} \boldsymbol{\delta}=\mathbf{J}^{\top} \mathbf{e}$

Revisit Standard BA

- Step 1: Construct normal equation
\square Compute and store the small non-zero block matrices $\mathbf{U}_{i i}, \mathbf{V}_{j j}, \mathbf{W}_{i j}$
\square Do not need to reconstruct $\mathbf{J}^{\top} \mathbf{J}$ from scratch.
\square Only need to add new block matrices.

$$
\begin{gathered}
\mathbf{J}^{\top} \mathbf{J} \boldsymbol{\delta}=\mathbf{J}^{\top} \mathbf{e} \\
{\left[\begin{array}{cc}
\mathbf{U} & \mathbf{W} \\
\mathbf{W}^{\top} & \mathbf{V}
\end{array}\right]\left[\begin{array}{l}
\delta_{\mathbf{C}} \\
\delta_{\mathbf{X}}
\end{array}\right]=\left[\begin{array}{l}
\mathbf{u} \\
\mathbf{v}
\end{array}\right]}
\end{gathered}
$$

Revisit Standard BA

- Step 2: Marginalize points to construct Schur Complement
$\square \mathbf{S}$ is also sparse, with non-zero block matrix $\mathbf{S}_{i_{1} i_{2}}$ if and only if camera i_{1} and i_{2} share common points.

$$
\begin{aligned}
& \mathbf{S} \delta_{\mathbf{C}}=\mathbf{g} \\
& \mathbf{S}=\left(\mathbf{U}-\mathbf{W} \mathbf{V}^{-1} \mathbf{W}^{\top}\right) \\
& \mathbf{g}=\mathbf{u}-\mathbf{W} \mathbf{V}^{-1} \mathbf{v}
\end{aligned}
$$

Revisit Standard BA

- Step 3: Update cameras
\square Use preconditioned conjugate gradient (PCG) to solve for $\delta_{\mathbf{C}}$
- PCG naturally leverages the sparseness of \mathbf{S}
$\square \mathbf{C}_{i}=\exp \left(\delta_{\mathbf{C}_{i}}\right) \mathbf{C}_{i}$
- Step 4: Update points
\square Back substitution

$$
\delta_{\mathbf{x}_{j}}=\mathbf{v}_{j j}^{-1}\left(\mathbf{v}_{j}-\sum_{i \in \mathcal{V}_{j}} \mathbf{w}_{i j}^{\top} \delta \mathbf{C}_{i}\right)
$$

$$
\mathbf{X}_{j}+=\delta \mathbf{X}_{\mathbf{X}_{j}}
$$

Revisit Standard BA

- Num. of observations in each keyframe much larger than Num. of cameras
\square Computation :
Step 1, 2 > Step 3
\square Construction of normal equation and Schur complement takes much more time than PCG iterations
- most variables nearly unchanged (incremental reconstruction)
\square Most computation in steps 1, 2, 4 are unnecessary
\square Contribution of most $\mathbf{f}_{i j} \mathrm{~s}$ to normal equation nearly remains the same

Efficient Incremental BA (EIBA)

- Local BA vs. Global B
\square local BA : suboptimal, especially when the local map contains large error.
\square global BA : accurate but slow, high latency, lots of unnecessary computation.
■ Incremental BA
\square Makes maximum use of intermediate computation for efficiency
\square Adaptively updating affected keyframes for map refinement

One iteration in EIBA

- Step 1 : Update normal equations and

Schur complement from the last iteration
\square Store the effect of $\mathbf{f}_{i j}$ in $\mathbf{A}_{i j}^{\mathrm{U}}, \mathbf{A}_{i j}^{\mathbf{V}}, \mathbf{b}_{i j}^{\mathbf{u}}$ and $\mathbf{b}_{i j}^{\mathbf{V}}$, initialize to 0 at first, only re-computed when linearization point of $\mathbf{f}_{i j}$ is changed.
\square Remove contribution from the last iteration, refresh them, update for current iteration.
\square Update from $\mathbf{A}_{i j}^{\mathbf{U}}, \mathbf{A}_{i j}^{\mathbf{V}}, \mathbf{b}_{i j}^{\mathbf{u}}$ and $\mathbf{b}_{i j}^{\mathbf{V}}$

One iteration in EIBA

- Step 1 : Update normal equations and Schur complement from the last iteration
for each point j and each camera $i \in \mathcal{V}_{j}$ that \mathbf{C}_{i} or \mathbf{X}_{j} is changed do

Construct linearized equation

$$
\begin{aligned}
& \mathbf{S}_{i i^{-}}=\mathbf{A}_{i j}^{\mathbf{U}} ; \mathbf{A}_{i j}^{\mathbf{U}}=\mathbf{J}_{\mathbf{C}_{i j}}^{\top} \mathbf{J}_{\mathbf{C}_{i j}} ; \mathbf{S}_{i i^{+}}=\mathbf{A}_{i j}^{\mathbf{U}} \\
& \mathbf{V}_{j j}=\mathbf{A}_{i j}^{\mathbf{V}} ; \mathbf{A}_{i j}^{\mathbf{V}}=\mathbf{J}_{\mathbf{X}_{i j}}^{\top} \mathbf{J}_{\mathbf{X}_{i j}} ; \mathbf{V}_{j j}+=\mathbf{A}_{i j}^{\mathbf{V}} \\
& \mathbf{g}_{i}-=\mathbf{b}_{i j}^{\mathbf{u}} ; \mathbf{b}_{i j}^{\mathbf{u}}=\mathbf{J}_{\mathbf{C}_{i j}}^{\top} \mathbf{e}_{i j} ; \mathbf{g}_{i}+=\mathbf{b}_{i j}^{\mathbf{u}} \\
& \mathbf{v}_{j^{-}}=\mathbf{b}_{i j}^{\mathbf{v}} ; \mathbf{b}_{i j}^{\mathbf{v}}=\mathbf{J}_{\mathbf{X}_{i j}}^{\top} \mathbf{e}_{i j} ; \mathbf{v}_{j^{+}}=\mathbf{b}_{i j}^{\mathbf{v}} \\
& \mathbf{W}_{i j}=\mathbf{J}_{\mathbf{C}_{i j}}^{\top} \mathbf{J}_{\mathbf{X}_{i j}} \\
& \text { Mark } \mathbf{V}_{j j} \text { updated }
\end{aligned}
$$

end for

One iteration in EIBA

- Step 2 : Update point marginalization and Schur complement from last iteration
for each point j that $\mathbf{V}_{j j}$ is updated and each camera pair

$$
\begin{aligned}
& \left(i_{1}, i_{2}\right) \in \mathcal{V}_{j} \times \mathcal{V}_{j} \mathbf{d o} \\
& \mathbf{S}_{i_{1} i_{2}}+=\mathbf{A}_{i_{1} i_{2} j} \\
& \mathbf{A}_{i_{1} i_{2 j} j}=\mathbf{W}_{i_{1} j} \mathbf{V}_{j j}^{-1} \mathbf{W}_{i_{2 j} j}^{\top} \\
& \mathbf{S}_{i_{1} i_{2}-}=\mathbf{A}_{i_{1} i_{2} j}
\end{aligned}
$$

end for
for each point j that $\mathbf{V}_{j j}$ is updated and each camera $i \in \mathcal{V}_{j}$ do

$$
\mathbf{g}_{i}+=\mathbf{b}_{i j}^{\mathbf{g}} ; \mathbf{b}_{i j}^{\mathbf{g}}=\mathbf{W}_{i j} \mathbf{V}_{j j}^{-1} \mathbf{v}_{j} ; \mathbf{g}_{i}-=\mathbf{b}_{i j}^{\mathbf{g}}
$$

end for

One iteration in EIBA

- Step 3 : Update cameras
\square Solve $\delta_{\mathbf{C}}$ by PCG
\square Change \mathbf{C}_{i} only if $\left\|\delta_{\mathbf{C}_{i}}\right\|$ exceeds a threshold ϵ_{c}
- Step 4 : Update points
\square Back substitution only for visible points in the changed cameras
\square Change \mathbf{X}_{j} only if $\left\|\delta \mathbf{x}_{j}\right\|$ exceeds a threshold ϵ_{p}

EIBA in RKD-SLAM

- Energy function

$$
\begin{gathered}
\sum_{j} \sum_{i \in \mathcal{V}_{j}}\left(\| \frac{\left.\begin{array}{c}
\text { Reprojection error }
\end{array} \quad \begin{array}{l}
\text { Inverse depth error } \\
\boldsymbol{\pi}\left(\mathbf{K}\left(\mathbf{C}_{i} \mathbf{X}_{j}\right)\right)-\mathbf{x}_{j i} \\
\sigma_{\mathbf{x}}
\end{array}\left\|_{\delta}+\right\| \frac{z^{-1}\left(\mathbf{C}_{i} \mathbf{X}_{j}\right)-z_{j i}^{-1}}{\sigma_{z}} \|_{\delta}\right)}{+\sum_{\left(i_{1}, i_{2}\right) \in \mathcal{L}}\left\|\log \left(\mathbf{C}_{i_{1}} \circ \mathbf{C}_{i_{2}} \circ \mathbf{T}_{i_{1} i_{2}}^{-1}\right)\right\|_{\Sigma_{i_{1} i_{2}}}^{2},} \begin{array}{l}
\text { Loop constraint }
\end{array}\right.
\end{gathered}
$$

\square Consist of 3D points observation term and loop constraint term

EIBA in RKD-SLAM

- 3D point observation term

$$
\sum_{j} \sum_{i \in \mathcal{Y}_{j}}\left(\left\|\frac{\boldsymbol{\pi}\left(\mathbf{K}\left(\mathbf{C}_{i} \mathbf{X}_{j}\right)\right)-\mathbf{x}_{j i}}{\sigma_{\mathbf{x}}}\right\|_{\delta}+\left\|\frac{z^{-1}\left(\mathbf{C}_{i} \mathbf{X}_{j}\right)-z_{j i}^{-1}}{\sigma_{z}}\right\|_{\delta}\right)
$$

\square Use inverse depth parameterize \mathbf{X}_{j}
. $\mathbf{X}_{j}=\mathbf{C}_{k}^{-1}\left(z_{j k} \mathbf{K}^{-1} \hat{\mathbf{x}}_{j k}\right)$

- Each re-projection equation $\mathbf{f}_{i j}$ relates two camera poses \mathbf{C}_{i} and \mathbf{C}_{k}, one 3D point \mathbf{X}_{j}
- Linearization

$$
\mathbf{f}_{i j}\left(\mathbf{C}_{i}, \mathbf{C}_{k}, \mathbf{X}_{j}\right) \approx \mathbf{J}_{\mathbf{C}_{i j}} \delta_{\mathbf{C}_{i}}+\mathbf{J}_{\mathbf{C}_{k j}} \delta_{\mathbf{C}_{k}}+\mathbf{J}_{\mathbf{X}_{i j}} \delta_{\mathbf{x}_{j}}-\mathbf{e}_{i j}
$$

- Also need to update $\mathbf{S}_{k k}, \mathbf{S}_{i k}, \mathbf{W}_{k j}$ and \mathbf{g}_{k}

EIBA in RKD-SLAM

■ Loop constraint term

$$
\sum_{\left(i_{1}, i_{2}\right) \in \mathcal{L}}\left\|\log \left(\mathbf{C}_{i_{1}} \circ \mathbf{C}_{i_{2}} \circ \mathbf{T}_{i_{1} i_{2}}^{-1}\right)\right\|_{\Sigma_{i_{1} i_{2}}}^{2}
$$

\square Represented as relative pose $\mathbf{T}_{i_{1} i_{2}}$
\square Linearization

$$
\mathbf{f}\left(\mathbf{C}_{i_{1}}, \mathbf{C}_{i_{2}}\right) \approx \mathbf{J}_{i_{1}} \delta_{\mathbf{C}_{i_{1}}}+\mathbf{J}_{i_{2}} \delta_{\mathbf{C}_{i_{2}}}-\mathbf{e} .
$$

\square Update

Performance of EIBA

- Computation time

Fig. 4. The computation time of our EIBA and iSAM2 while incrementally adding each new keyframe on "fr3_long_office" sequence.

Performance of EIBA

- Computation time
\square Our EIBA is faster by an order of one magnitude than iSAM2.

Sequence	Num. of Camera / Points	Num. of Observations	EIBA	iSAM2		
				No relinearization	relinearizeSkip $=10$	relinearizeSkip $=5$
fr3_long_office	92 / 4322	12027	88.9 ms	983.9 ms	1968.2 ms	2670.9 ms
fr2_desk	$63 / 2780$	6897	34.8 ms	507.8 ms	850.4 ms	1152.0 ms

Performance of EIBA

- Optimized reprojection error

Fig. 5. The optimized reprojection error (RMSE) for our EIBA and iSAM2 while incrementally adding each new keyframe on "fr3_long_office" sequence.

Open-source Solver \& BA

- g2o: https://github.com/RainerKuemmerle/g2o
- GTSAM\& iSAM: https://bitbucket.org/gtborg/gtsam/
- Ceres Solver: http://ceres-solver.org/
- Bundler: http://www.cs.cornell.edu/~snavely/bundler/
- PBA: https://grail.cs.washington.edu/projects/mcba/
- EIBA: the source code will be released soon. http://www.zjucvg.net

