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Bundle Adjustment

 Jointly optimize all 

cameras and points
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Triggs, B., Mclauchlan, P., Hartley, R., and Fitzgibbon, A. 1999. Bundle 
adjustment—a modern synthesis. In Proceedings of the International Workshop 
on Vision Algorithms: Theory and Practice. 298–372.



Nonlinear Least Squares

 Gaussian Newton

 Levenberg-Marquardt
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Sparse Bundle Adjustment

1 Camera1 Point

Sparsity  patten of Hessian

Manolis I. A. Lourakis, Antonis A. Argyros: 

SBA: A software package for generic sparse 

bundle adjustment. ACM Trans. Math. Softw. 

36(1) (2009)
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Sparse Bundle Adjustment

 An simple example

 4 points

 3 cameras

 all points are visible in all cameras



Sparse Bundle Adjustment
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Sparse Bundle Adjustment
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Sparse Bundle Adjustment
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Sparse Bundle Adjustment
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Sparse Bundle Adjustment
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Schur Complement

Compute cameras first (# cameras << # points)

back substitution for points



Sparse Bundle Adjustment

 In general, NOT all points are visible in all 

cameras

 Aij = Bij = 0 if i-th points is invisible (or not matched) in j-th camera

 More sparse structure, more speed-up
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Related Works

 Hierarchical BA

 Steedly et al. 2003, Snavely et al. 2008, Frahm et al. 

2010

 Segment-based BA

 Zhu et al. 2014, Zhang et al. 2016 (ENFT)

 Incremental BA

 Kaess et al. 2008 (iSAM), Kaess et al. 2011 (iSAM2), 

Indelman et al. 2012 (iLBA), Ila et al. 2017 (SLAM++), 

Liu et al. 2017 (EIBA)

 Parallel BA

 Ni et al. 2007, Wu et al. 2011 (PBA)



Segment-based Bundle 

Adjustment

Zhang G, Liu H, Dong Z, et al. Efficient non-consecutive feature tracking for 

robust structure-from-motion[J]. IEEE Transactions on Image Processing, 2016, 

25(12): 5957-5970.



The Difficulties for Large-Scale SfM

 Global Bundle Adjustment

 Huge variables

 Memory limit

 Time-consuming

 Iterative Local Bundle Adjustment

 Large error is difficult to be propagated to the whole 

sequence.

 Easily stuck in a local optimum.

 Pose Graph Optimization

 May not sufficiently minimize the error.



Segment-based Progressive 

SfM
 Split a long sequence to multiple short sequences.

 Perform SfM for each sequence and align them together.

 Detect the ``split point’’ and further split the sequence if 

the reprojection error is large.

 The above procedure is repeated until the error is less 

than a threshold.



Segment-based Progressive 

SfM
 Split Point Detection

 Best minimize the reprojection error w.r.t. a, i.e. steepest descent 

direction

 The inconsistency between two consecutive frames



Split Point Detection



SFM on Garden Dataset

6段长视频序列，将近10万帧，特征匹配74分钟，SfM求解16分钟（单线程），
平均17.7fps

VisualSFM：SfM求解 57 分钟 （GPU加速）



Comparison on Garden Dataset

ENFT-SFM VisualSFM ORB-SLAM



Comparison with ORB-SLAM in 

Garden 01 Sequence

ENFT-SLAM ORB-SLAM

Non-consecutive Track Matching

Segment-based BA

Bag-of-words Place Recognition

Pose Graph Optimization + Traditional BA



Incremental BA in iSAM2 

Based on Bayes Tree

Kaess, M., Johannsson, H., Roberts, R., Ila, V., Leonard, J. J., & Dellaert, F. 

(2012). iSAM2: Incremental smoothing and mapping using the Bayes tree. The 

International Journal of Robotics Research, 31(2), 216-235.



Incremental Bundle Adjustment 

In order to benefit from increased accuracy offered by 

relinearization in batch optimization:

 Fixed-lag / Sliding-window Approaches

 Keyframe-based Approaches

 Incremental Approaches (iSAM, iSAM2, our 

EIBA)



Kaess, M., Johannsson, H., Roberts, R., Ila, V., Leonard, J. J., & 
Dellaert, F. (2012). iSAM2: Incremental smoothing and mapping 
using the Bayes tree. The International Journal of Robotics 
Research, 31(2), 216-235.

Gaussian Factor Graph

loop constraint

a-priori constraint

kinematics measurement

projection measurement

: state

: landmark



 Reduce fill-in: Use heuristics algorithms CCOLAMD to 

provide a suboptimal ordering for factorization (finding 

the optimal is NP-hard).

 Encode with the Bayes tree: Introduce Bayes tree 

(a.k.a. directed clique tree) to encode the square root 

information matrix.

 Fluid relinearization: Perform fluid relinearization when 

adding new factors or updating the linearization points to 

avoid batch optimization.

 Partial state updates: Perform partial state updates 

when solving the Bayes in order to update a state 

variable only when neccesary.

Main Ideas of iSAM2



One step: linearization

𝑥2, 𝑥3

𝑙1, 𝑥1|𝑥2 𝑙2|𝑥3

𝑙1

𝑥1 𝑥2 𝑥3

𝑙2

𝑙1

𝑥1 𝑥2 𝑥3

𝑙2

𝑥1, 𝑥2, 𝑥3

𝑙1|𝑥1, 𝑥2

𝑙2|𝑥3

factor graph

chordal Bayes net

Bayes tree

eliminating the factor graph 

using the CCOLAMD ordering 

(e.g.𝑙1, 𝑙2, 𝑥1, 𝑥2, 𝑥3)

creating Bayes tree in 

reverse elimination order 

(e.g.𝑥3, 𝑥2, 𝑥1, 𝑙2, 𝑙1)

adding new factors/states 

and applying the fluid 

relinearization (e.g. 

𝑓 𝑥1, 𝑥3 )



One step: partial update

𝑥2, 𝑥3

𝑙1, 𝑥1|𝑥2 𝑙2|𝑥3

starting from the 

root clique

updating all 

variables that 

change by more 

than a threshold



Reordering with CCOLAMD / CHOLMOD

Kaess, M., Ranganathan, A., & Dellaert, F. (2008). iSAM: Incremental 
smoothing and mapping. IEEE Transactions on Robotics, 24(6), 1365-1378.

Reduce Fill-in



In Gaussian factor graphs, elimination is equivalent 
to sparse QR factorization of the measurement 
Jacobian.

𝐽 =

× ×
× ×

× ×
×
× ×

× ×

𝑙1 𝑙2 𝑥1 𝑥2 𝑥3

sparse pattern of the 

measurement Jacobian

𝑙1

𝑥1 𝑥2 𝑥3

𝑙2



𝐻 =

× × ×
× ×

× × ×
× × × ×

× × ×

𝑙1

𝑥1 𝑥2 𝑥3

𝑙2

In Gaussian factor graphs, elimination is equivalent 
to sparse QR factorization of the measurement 
Jacobian.

𝑙1 𝑙2 𝑥1 𝑥2 𝑥3

sparse pattern of the 

information matrix



𝑅 =

× × ×
× ×

× ×
× ×

×

In Gaussian factor graphs, elimination is equivalent 
to sparse QR factorization of the measurement 
Jacobian.

𝑙1

𝑥1 𝑥2 𝑥3

𝑙2

𝑙1 𝑙2 𝑥1 𝑥2 𝑥3

sparse pattern of the 

square root information 

matrix

No fill-in if we eliminate the factor 

graph using the elimination ordering 

𝑙1, 𝑙2, 𝑥1, 𝑥2, 𝑥3.

The resulting directed graph is called 

the chordal Bayes net.



𝑙1

𝑥1 𝑥2 𝑥3

𝑙2

𝑙1 𝑙2 𝑥1 𝑥2 𝑥3

Encode with the Bayes Tree

For each conditional density 𝑃(𝜃𝑖|𝑆𝑖)
of the Bayes net, in reverse 

elimination order (i.e. 𝑥3, 𝑥2, 𝑥1, 𝑙2, 𝑙1), 

we create a Bayes tree.



𝑙1 𝑙2 𝑥1 𝑥2 𝑥3

𝑥2, 𝑥3

𝑙1, 𝑥1|𝑥2 𝑙2|𝑥3

Encode with the Bayes Tree

𝑙1, 𝑥1|𝑥2

A clique of the Bayes tree encoding 

the conditional density 𝑃(𝑙1, 𝑥1|𝑥2)
𝑙1, 𝑥1 are called the frontal variables

𝑥2 is called the separator



𝑥2, 𝑥3

𝑙1, 𝑥1|𝑥2 𝑙2|𝑥3

Adding New Factors

𝑥1, 𝑥2, 𝑥3

𝑙1|𝑥1, 𝑥2

𝑙2|𝑥3

Fluid relinearization when adding new factors.

 For each variable affected by new factors, remove the 

corresponding clique and all parents up to the root

 Re-interpret the removed part as a factor graph

 Add the new factors into the resulting factor graph.

 Re-order variables and eliminate the factor graph to recreate 

a top Bayes tree.

 Insert the orphaned sub-trees back into the new Bayes tree.

ALGORITHM



𝑥2, 𝑥3

𝑙1, 𝑥1|𝑥2

𝑙2|𝑥3

𝑙1

𝑥1

𝑥2

𝑥3

𝑙1

𝑥1

𝑥2

𝑥3

𝑙1

𝑥1

𝑥2

𝑥3

𝑙2

𝑥1, 𝑥2, 𝑥3

𝑙1|𝑥1, 𝑥2

𝑙2|𝑥3

add a new factor 𝑓 𝑥1, 𝑥3 then 

update the Bayes tree

insert the 

orphaned

sub-tree 

back c

remove top of 

Bayes tree

re-interpret it as 

a factor graph

add the new factor 𝑓 𝑥1, 𝑥3 reorder and re-eliminate to 

create a new Bayes tree

Example:
adding a factor 



Kaess, M., Johannsson, H., Roberts, R., Ila, V., Leonard, J. J., & Dellaert, F. 
(2012). iSAM2: Incremental smoothing and mapping using the Bayes tree. The 
International Journal of Robotics Research, 31(2), 216-235.

Example of adding new states and factors

Information only propagates upwards.



Example of adding new states and factors

Information only propagates upwards.

Kaess, M., Johannsson, H., Roberts, R., Ila, V., Leonard, J. J., & Dellaert, F. 
(2012). iSAM2: Incremental smoothing and mapping using the Bayes tree. The 
International Journal of Robotics Research, 31(2), 216-235.



Kaess, M., Johannsson, H., Roberts, R., Ila, V., Leonard, J. J., & Dellaert, F. 
(2012). iSAM2: Incremental smoothing and mapping using the Bayes tree. The 
International Journal of Robotics Research, 31(2), 216-235.

Example of adding new states and factors

Information only propagates upwards.



While adding new states (always along with adding 

new factors), information only propagates upwards.

1. Force the most recently accessed variables to the 

end and still provide a good overall ordering.

2. Subsequent updates will then only affect a small part 

of the tree (the top of the Bayes tree). 

3. Efficient in most cases, except for large loop 

closures.

Constrained COLAMD



Fluid Relinearization

Fluid relinearization when linearization points 

change (together with adding new factors).

1. For each affected variable remove the corresponding 

clique and all parents up to the root.

2. Relinearize all factors required to recreate top.

3. Add cached linear factors from orphans.

4. Re-order variables and eliminate the factor graph to 

create a new top Bayes tree.

5. Insert the orphaned sub-trees back into the new Bayes 

tree.

ALGORITHM



Starting from the root clique:

1. For current clique:

compute update of frontal variables from the 

local conditional density.

2. For all variables that change by more than a 

threshold:

recursively process each descendant containing 

such a variable.

Partial State Updates

ALGORITHM



Kaess, M., Johannsson, H., Roberts, R., Ila, V., Leonard, J. J., & Dellaert, F. 
(2012). iSAM2: Incremental smoothing and mapping using the Bayes tree. The 
International Journal of Robotics Research, 31(2), 216-235.



Efficient Incremental BA

Liu H, Li C, Chen G, et al. Robust Keyframe-based Dense SLAM with an RGB-

D Camera[J]. arXiv preprint arXiv:1711.05166, 2017.



Revisit Standard BA
 A regular BA function

 Convert Huber norm by re-weighting scheme

 Linearization

 Solving normal equation

Reprojection error Inverse depth error

is 3𝑛𝑥 × (6𝑛𝑐 + 3𝑛𝑝)

Jacobian matrix



Revisit Standard BA

 Step 1: Construct normal equation

Compute and store the small non-zero block 

matrices 𝐔𝑖𝑖, 𝐕𝑗𝑗, 𝐖𝑖𝑗

Do not need to reconstruct         from scratch.

Only need to add new block matrices.

𝐔 : 𝑛𝑐 × 𝑛𝑐
𝐕 : 𝑛𝑝 × 𝑛𝑝
𝐖 : 𝑛𝑐 × 𝑛𝑝
𝐖𝒊𝒋 no zero only if point 

𝑗 is visible in camera 𝑖



Revisit Standard BA

 Step 2: Marginalize points to construct 

Schur Complement

𝐒 is also sparse, with non-zero block matrix        

if and only if camera 𝑖1 and  𝑖2 share common 

points.



Revisit Standard BA

 Step 3: Update cameras

Use preconditioned conjugate gradient (PCG) 

to solve for

 PCG naturally leverages the sparseness of 𝐒



 Step 4: Update points

Back substitution 



Revisit Standard BA

 Num. of observations in each keyframe much 

larger than Num. of cameras

 Computation :

Step 1, 2  ≫ Step 3

 Construction of normal equation and Schur

complement takes much more time than PCG 

iterations

 most variables nearly unchanged (incremental 

reconstruction)

 Most computation in steps 1, 2, 4 are unnecessary

 Contribution of most         to normal equation nearly 

remains the same



Efficient Incremental BA (EIBA)
 Local BA vs. Global B

 local BA : suboptimal, especially when the local map 

contains large error.

 global BA : accurate but slow, high latency, lots of 

unnecessary computation.

 Incremental BA
 Makes maximum use of intermediate computation for 

efficiency

 Adaptively updating affected keyframes for map 

refinement



One iteration in EIBA

 Step 1 : Update normal equations and 

Schur complement from the last iteration

Store the effect of       in                                 ,  

initialize to 0 at first, only re-computed when 

linearization point of       is changed.

Remove contribution from the last iteration, 

refresh them, update for current iteration.

Update from 



One iteration in EIBA

 Step 1 : Update normal equations and 

Schur complement from the last iteration



One iteration in EIBA

 Step 2 : Update point marginalization and 

Schur complement from last iteration



One iteration in EIBA

 Step 3 : Update cameras

Solve       by PCG

Change      only if         exceeds a threshold

 Step 4 : Update points

Back substitution only for visible points in the 

changed cameras

Change     only if           exceeds a threshold



EIBA in RKD-SLAM

 Energy function

Consist of 3D points observation term and

loop constraint term

Reprojection error Inverse depth error

Loop constraint



EIBA in RKD-SLAM

 3D point observation term

Use inverse depth parameterize



 Each re-projection equation     relates two camera 

poses                   ,one 3D point 

 Linearization

 Also need to update 



EIBA in RKD-SLAM
 Loop constraint term

Represented as relative pose

Linearization

 Update



Performance of EIBA
 Computation time



Performance of EIBA

 Computation time

Our EIBA is faster by an order of one 

magnitude than iSAM2.



Performance of EIBA
 Optimized reprojection error



Open-source Solver & BA

 g2o: https://github.com/RainerKuemmerle/g2o

 GTSAM& iSAM: https://bitbucket.org/gtborg/gtsam/

 Ceres Solver: http://ceres-solver.org/

 Bundler: http://www.cs.cornell.edu/~snavely/bundler/

 PBA: https://grail.cs.washington.edu/projects/mcba/

 EIBA: the source code will be released soon. 

http://www.zjucvg.net

https://github.com/RainerKuemmerle/g2o
https://bitbucket.org/gtborg/gtsam/
http://ceres-solver.org/
http://www.cs.cornell.edu/~snavely/bundler/
https://grail.cs.washington.edu/projects/mcba/

