
集束调整

章国锋

浙江大学CAD&CG国家重点实验室

Bundle Adjustment

 Jointly optimize all

cameras and points

2

,...,,,...

),(minarg
11

ijji
XXCC

xCX
pNcN

Triggs, B., Mclauchlan, P., Hartley, R., and Fitzgibbon, A. 1999. Bundle
adjustment—a modern synthesis. In Proceedings of the International Workshop
on Vision Algorithms: Theory and Practice. 298–372.

Nonlinear Least Squares

 Gaussian Newton

 Levenberg-Marquardt

)ˆ(

)ˆ()ˆ()(

)(minarg

ˆ

*

2*

xJJJ

xJ

Jxxx

xx

T

x

T

xx

xx

x

)ˆ()(xJxIJJ TT

first order approximation to Hessian

Jacobian matrix

Sparse Bundle Adjustment

1 Camera1 Point

Sparsity patten of Hessian

Manolis I. A. Lourakis, Antonis A. Argyros:

SBA: A software package for generic sparse

bundle adjustment. ACM Trans. Math. Softw.

36(1) (2009)

2

,...,,,...

),(minarg
11

ijji
XXCC

xCX
pNcN

Sparse Bundle Adjustment

 An simple example

 4 points

 3 cameras

 all points are visible in all cameras

Sparse Bundle Adjustment

43

42

41

33

32

31

23

22

21

13

12

11

4343

4242

4141

3333

3232

3131

2323

2222

2121

1313

1212

1111

,

00000

00000

00000

00000

00000

00000

00000

00000

00000

00000

00000

00000

BA

BA

BA

BA

BA

BA

BA

BA

BA

BA

BA

BA

J

Sparse Bundle Adjustment

 T

x

T JJJ

ij

T

ijij

j

ij

T

iji

i

ij

T

ijj

TTT

TTT

TTT

TTT

T

T

BAWBBVAAU

VWWW

VWWW

VWWW

VWWW

WWWWU

WWWWU

WWWWU

VW

WU
JJ

,,

000

000

000

000

00

00

00

3

1

4

1

4434241

3333231

2232221

1131211

433323133

423222122

413121111

Sparse Bundle Adjustment

 T

x

T JJJ

 TT

X

T

X

T

X

T

X

T

C

T

C

T

C

X

C

x 4321321

Sparse Bundle Adjustment

 T

x

T JJJ

3

1

4

1

4321321

j

ij

T

ijX

i

ij

T

ijC

TT

X

T

X

T

X

T

X

T

C

T

C

T

C

X

CT

B

A

J

i

j

Sparse Bundle Adjustment

 T

x

T JJJ

C

T

XX

XCC

T

X

XC

X

C

T

T

X

C

X

C

T

WV

WVS

WWVUS

WV

VW

WWVU

VW

WU

)(

0

1

1

11

Schur Complement

Compute cameras first (# cameras << # points)

back substitution for points

Sparse Bundle Adjustment

 In general, NOT all points are visible in all

cameras

 Aij = Bij = 0 if i-th points is invisible (or not matched) in j-th camera

 More sparse structure, more speed-up

ij

T

ijij

j

ij

T

iji

i

ij

T

ijj BAWBBVAAU

,,
3

1

4

1

Related Works

 Hierarchical BA

 Steedly et al. 2003, Snavely et al. 2008, Frahm et al.

2010

 Segment-based BA

 Zhu et al. 2014, Zhang et al. 2016 (ENFT)

 Incremental BA

 Kaess et al. 2008 (iSAM), Kaess et al. 2011 (iSAM2),

Indelman et al. 2012 (iLBA), Ila et al. 2017 (SLAM++),

Liu et al. 2017 (EIBA)

 Parallel BA

 Ni et al. 2007, Wu et al. 2011 (PBA)

Segment-based Bundle

Adjustment

Zhang G, Liu H, Dong Z, et al. Efficient non-consecutive feature tracking for

robust structure-from-motion[J]. IEEE Transactions on Image Processing, 2016,

25(12): 5957-5970.

The Difficulties for Large-Scale SfM

 Global Bundle Adjustment

 Huge variables

 Memory limit

 Time-consuming

 Iterative Local Bundle Adjustment

 Large error is difficult to be propagated to the whole

sequence.

 Easily stuck in a local optimum.

 Pose Graph Optimization

 May not sufficiently minimize the error.

Segment-based Progressive

SfM
 Split a long sequence to multiple short sequences.

 Perform SfM for each sequence and align them together.

 Detect the ``split point’’ and further split the sequence if

the reprojection error is large.

 The above procedure is repeated until the error is less

than a threshold.

Segment-based Progressive

SfM
 Split Point Detection

 Best minimize the reprojection error w.r.t. a, i.e. steepest descent

direction

 The inconsistency between two consecutive frames

Split Point Detection

SFM on Garden Dataset

6段长视频序列，将近10万帧，特征匹配74分钟，SfM求解16分钟（单线程），
平均17.7fps

VisualSFM：SfM求解 57 分钟 （GPU加速）

Comparison on Garden Dataset

ENFT-SFM VisualSFM ORB-SLAM

Comparison with ORB-SLAM in

Garden 01 Sequence

ENFT-SLAM ORB-SLAM

Non-consecutive Track Matching

Segment-based BA

Bag-of-words Place Recognition

Pose Graph Optimization + Traditional BA

Incremental BA in iSAM2

Based on Bayes Tree

Kaess, M., Johannsson, H., Roberts, R., Ila, V., Leonard, J. J., & Dellaert, F.

(2012). iSAM2: Incremental smoothing and mapping using the Bayes tree. The

International Journal of Robotics Research, 31(2), 216-235.

Incremental Bundle Adjustment

In order to benefit from increased accuracy offered by

relinearization in batch optimization:

 Fixed-lag / Sliding-window Approaches

 Keyframe-based Approaches

 Incremental Approaches (iSAM, iSAM2, our

EIBA)

Kaess, M., Johannsson, H., Roberts, R., Ila, V., Leonard, J. J., &
Dellaert, F. (2012). iSAM2: Incremental smoothing and mapping
using the Bayes tree. The International Journal of Robotics
Research, 31(2), 216-235.

Gaussian Factor Graph

loop constraint

a-priori constraint

kinematics measurement

projection measurement

: state

: landmark

 Reduce fill-in: Use heuristics algorithms CCOLAMD to

provide a suboptimal ordering for factorization (finding

the optimal is NP-hard).

 Encode with the Bayes tree: Introduce Bayes tree

(a.k.a. directed clique tree) to encode the square root

information matrix.

 Fluid relinearization: Perform fluid relinearization when

adding new factors or updating the linearization points to

avoid batch optimization.

 Partial state updates: Perform partial state updates

when solving the Bayes in order to update a state

variable only when neccesary.

Main Ideas of iSAM2

One step: linearization

𝑥2, 𝑥3

𝑙1, 𝑥1|𝑥2 𝑙2|𝑥3

𝑙1

𝑥1 𝑥2 𝑥3

𝑙2

𝑙1

𝑥1 𝑥2 𝑥3

𝑙2

𝑥1, 𝑥2, 𝑥3

𝑙1|𝑥1, 𝑥2

𝑙2|𝑥3

factor graph

chordal Bayes net

Bayes tree

eliminating the factor graph

using the CCOLAMD ordering

(e.g.𝑙1, 𝑙2, 𝑥1, 𝑥2, 𝑥3)

creating Bayes tree in

reverse elimination order

(e.g.𝑥3, 𝑥2, 𝑥1, 𝑙2, 𝑙1)

adding new factors/states

and applying the fluid

relinearization (e.g.

𝑓 𝑥1, 𝑥3)

One step: partial update

𝑥2, 𝑥3

𝑙1, 𝑥1|𝑥2 𝑙2|𝑥3

starting from the

root clique

updating all

variables that

change by more

than a threshold

Reordering with CCOLAMD / CHOLMOD

Kaess, M., Ranganathan, A., & Dellaert, F. (2008). iSAM: Incremental
smoothing and mapping. IEEE Transactions on Robotics, 24(6), 1365-1378.

Reduce Fill-in

In Gaussian factor graphs, elimination is equivalent
to sparse QR factorization of the measurement
Jacobian.

𝐽 =

× ×
× ×

× ×
×
× ×

× ×

𝑙1 𝑙2 𝑥1 𝑥2 𝑥3

sparse pattern of the

measurement Jacobian

𝑙1

𝑥1 𝑥2 𝑥3

𝑙2

𝐻 =

× × ×
× ×

× × ×
× × × ×

× × ×

𝑙1

𝑥1 𝑥2 𝑥3

𝑙2

In Gaussian factor graphs, elimination is equivalent
to sparse QR factorization of the measurement
Jacobian.

𝑙1 𝑙2 𝑥1 𝑥2 𝑥3

sparse pattern of the

information matrix

𝑅 =

× × ×
× ×

× ×
× ×

×

In Gaussian factor graphs, elimination is equivalent
to sparse QR factorization of the measurement
Jacobian.

𝑙1

𝑥1 𝑥2 𝑥3

𝑙2

𝑙1 𝑙2 𝑥1 𝑥2 𝑥3

sparse pattern of the

square root information

matrix

No fill-in if we eliminate the factor

graph using the elimination ordering

𝑙1, 𝑙2, 𝑥1, 𝑥2, 𝑥3.

The resulting directed graph is called

the chordal Bayes net.

𝑙1

𝑥1 𝑥2 𝑥3

𝑙2

𝑙1 𝑙2 𝑥1 𝑥2 𝑥3

Encode with the Bayes Tree

For each conditional density 𝑃(𝜃𝑖|𝑆𝑖)
of the Bayes net, in reverse

elimination order (i.e. 𝑥3, 𝑥2, 𝑥1, 𝑙2, 𝑙1),

we create a Bayes tree.

𝑙1 𝑙2 𝑥1 𝑥2 𝑥3

𝑥2, 𝑥3

𝑙1, 𝑥1|𝑥2 𝑙2|𝑥3

Encode with the Bayes Tree

𝑙1, 𝑥1|𝑥2

A clique of the Bayes tree encoding

the conditional density 𝑃(𝑙1, 𝑥1|𝑥2)
𝑙1, 𝑥1 are called the frontal variables

𝑥2 is called the separator

𝑥2, 𝑥3

𝑙1, 𝑥1|𝑥2 𝑙2|𝑥3

Adding New Factors

𝑥1, 𝑥2, 𝑥3

𝑙1|𝑥1, 𝑥2

𝑙2|𝑥3

Fluid relinearization when adding new factors.

 For each variable affected by new factors, remove the

corresponding clique and all parents up to the root

 Re-interpret the removed part as a factor graph

 Add the new factors into the resulting factor graph.

 Re-order variables and eliminate the factor graph to recreate

a top Bayes tree.

 Insert the orphaned sub-trees back into the new Bayes tree.

ALGORITHM

𝑥2, 𝑥3

𝑙1, 𝑥1|𝑥2

𝑙2|𝑥3

𝑙1

𝑥1

𝑥2

𝑥3

𝑙1

𝑥1

𝑥2

𝑥3

𝑙1

𝑥1

𝑥2

𝑥3

𝑙2

𝑥1, 𝑥2, 𝑥3

𝑙1|𝑥1, 𝑥2

𝑙2|𝑥3

add a new factor 𝑓 𝑥1, 𝑥3 then

update the Bayes tree

insert the

orphaned

sub-tree

back c

remove top of

Bayes tree

re-interpret it as

a factor graph

add the new factor 𝑓 𝑥1, 𝑥3 reorder and re-eliminate to

create a new Bayes tree

Example:
adding a factor

Kaess, M., Johannsson, H., Roberts, R., Ila, V., Leonard, J. J., & Dellaert, F.
(2012). iSAM2: Incremental smoothing and mapping using the Bayes tree. The
International Journal of Robotics Research, 31(2), 216-235.

Example of adding new states and factors

Information only propagates upwards.

Example of adding new states and factors

Information only propagates upwards.

Kaess, M., Johannsson, H., Roberts, R., Ila, V., Leonard, J. J., & Dellaert, F.
(2012). iSAM2: Incremental smoothing and mapping using the Bayes tree. The
International Journal of Robotics Research, 31(2), 216-235.

Kaess, M., Johannsson, H., Roberts, R., Ila, V., Leonard, J. J., & Dellaert, F.
(2012). iSAM2: Incremental smoothing and mapping using the Bayes tree. The
International Journal of Robotics Research, 31(2), 216-235.

Example of adding new states and factors

Information only propagates upwards.

While adding new states (always along with adding

new factors), information only propagates upwards.

1. Force the most recently accessed variables to the

end and still provide a good overall ordering.

2. Subsequent updates will then only affect a small part

of the tree (the top of the Bayes tree).

3. Efficient in most cases, except for large loop

closures.

Constrained COLAMD

Fluid Relinearization

Fluid relinearization when linearization points

change (together with adding new factors).

1. For each affected variable remove the corresponding

clique and all parents up to the root.

2. Relinearize all factors required to recreate top.

3. Add cached linear factors from orphans.

4. Re-order variables and eliminate the factor graph to

create a new top Bayes tree.

5. Insert the orphaned sub-trees back into the new Bayes

tree.

ALGORITHM

Starting from the root clique:

1. For current clique:

compute update of frontal variables from the

local conditional density.

2. For all variables that change by more than a

threshold:

recursively process each descendant containing

such a variable.

Partial State Updates

ALGORITHM

Kaess, M., Johannsson, H., Roberts, R., Ila, V., Leonard, J. J., & Dellaert, F.
(2012). iSAM2: Incremental smoothing and mapping using the Bayes tree. The
International Journal of Robotics Research, 31(2), 216-235.

Efficient Incremental BA

Liu H, Li C, Chen G, et al. Robust Keyframe-based Dense SLAM with an RGB-

D Camera[J]. arXiv preprint arXiv:1711.05166, 2017.

Revisit Standard BA
 A regular BA function

 Convert Huber norm by re-weighting scheme

 Linearization

 Solving normal equation

Reprojection error Inverse depth error

is 3𝑛𝑥 × (6𝑛𝑐 + 3𝑛𝑝)

Jacobian matrix

Revisit Standard BA

 Step 1: Construct normal equation

Compute and store the small non-zero block

matrices 𝐔𝑖𝑖, 𝐕𝑗𝑗, 𝐖𝑖𝑗

Do not need to reconstruct from scratch.

Only need to add new block matrices.

𝐔 : 𝑛𝑐 × 𝑛𝑐
𝐕 : 𝑛𝑝 × 𝑛𝑝
𝐖 : 𝑛𝑐 × 𝑛𝑝
𝐖𝒊𝒋 no zero only if point

𝑗 is visible in camera 𝑖

Revisit Standard BA

 Step 2: Marginalize points to construct

Schur Complement

𝐒 is also sparse, with non-zero block matrix

if and only if camera 𝑖1 and 𝑖2 share common

points.

Revisit Standard BA

 Step 3: Update cameras

Use preconditioned conjugate gradient (PCG)

to solve for

 PCG naturally leverages the sparseness of 𝐒

 Step 4: Update points

Back substitution

Revisit Standard BA

 Num. of observations in each keyframe much

larger than Num. of cameras

 Computation :

Step 1, 2 ≫ Step 3

 Construction of normal equation and Schur

complement takes much more time than PCG

iterations

 most variables nearly unchanged (incremental

reconstruction)

 Most computation in steps 1, 2, 4 are unnecessary

 Contribution of most to normal equation nearly

remains the same

Efficient Incremental BA (EIBA)
 Local BA vs. Global B

 local BA : suboptimal, especially when the local map

contains large error.

 global BA : accurate but slow, high latency, lots of

unnecessary computation.

 Incremental BA
 Makes maximum use of intermediate computation for

efficiency

 Adaptively updating affected keyframes for map

refinement

One iteration in EIBA

 Step 1 : Update normal equations and

Schur complement from the last iteration

Store the effect of in ,

initialize to 0 at first, only re-computed when

linearization point of is changed.

Remove contribution from the last iteration,

refresh them, update for current iteration.

Update from

One iteration in EIBA

 Step 1 : Update normal equations and

Schur complement from the last iteration

One iteration in EIBA

 Step 2 : Update point marginalization and

Schur complement from last iteration

One iteration in EIBA

 Step 3 : Update cameras

Solve by PCG

Change only if exceeds a threshold

 Step 4 : Update points

Back substitution only for visible points in the

changed cameras

Change only if exceeds a threshold

EIBA in RKD-SLAM

 Energy function

Consist of 3D points observation term and

loop constraint term

Reprojection error Inverse depth error

Loop constraint

EIBA in RKD-SLAM

 3D point observation term

Use inverse depth parameterize

 Each re-projection equation relates two camera

poses ,one 3D point

 Linearization

 Also need to update

EIBA in RKD-SLAM
 Loop constraint term

Represented as relative pose

Linearization

 Update

Performance of EIBA
 Computation time

Performance of EIBA

 Computation time

Our EIBA is faster by an order of one

magnitude than iSAM2.

Performance of EIBA
 Optimized reprojection error

Open-source Solver & BA

 g2o: https://github.com/RainerKuemmerle/g2o

 GTSAM& iSAM: https://bitbucket.org/gtborg/gtsam/

 Ceres Solver: http://ceres-solver.org/

 Bundler: http://www.cs.cornell.edu/~snavely/bundler/

 PBA: https://grail.cs.washington.edu/projects/mcba/

 EIBA: the source code will be released soon.

http://www.zjucvg.net

https://github.com/RainerKuemmerle/g2o
https://bitbucket.org/gtborg/gtsam/
http://ceres-solver.org/
http://www.cs.cornell.edu/~snavely/bundler/
https://grail.cs.washington.edu/projects/mcba/

