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Goal

• Generate 3D model from 2D caricature image.

Input: 2D caricature image Output: 3D caricature face model
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• Shape from shading/Inverse rendering

• Machine learning algorithm

• Interactive modeling
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Current solution

• 3D face statistical representation
• 3D Morphable Model (3DMM):

𝑃 = ത𝑃 +

𝑖

𝛼𝑖𝑃𝑖

𝑃 : a 3D face, ത𝑃: mean face, 𝑃𝑖: principal basis, 𝛼𝑖: parameter of each basis 

• Bilinear model:

𝑃 = 𝐶𝑟 ×2 𝑢𝑖𝑑 ×3 𝑢𝑒𝑥𝑝
𝐶𝑟: Core tensor;   𝑢𝑖𝑑 , 𝑢𝑒𝑥𝑝: coefficient of identity and expression

[1] Blanz V et al. A morphable model for the synthesis of 3D faces.   ACM TOG 
[2] C. Cao et al.  Facewarehouse: A 3D facial expression database for visual computing.    IEEE TVCG 
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Current solution

• Shape from shading/Inverse rendering
• Add lighting/reflectance information generating 3D face model

[1] I. Kemelmacher-Shlizerman et al. 3D face reconstruction from a single image using a single reference face shape. T-PAMI 
[2] Y. Guo et al. CNN-based Real-time Dense Face Reconstruction with Inverse-rendered Photo-realistic Face Images.  T-PAMI
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Current solution
• Machine learning algorithm

• Build 3D caricature dataset

• Then use learning method to generate 3D model

[1] X. Han et al.   DeepSketch2Face: a deep learning based sketching system for 3D face and caricature modelling. ACM TOG



Current solution

• Interactive modeling
• Artist use specific software to create 3D model.

• This is the best method, but need domain knowledge and professional skill. 
And it is usually a time-consuming process.



Challenges

• A large variety of caricature styles

• Caricature image may not reflect real shading information

• Create a 3D caricature dataset is time-consuming



Observation

• Caricature have two basic characteristics
• Face constraint. i.e. we can tell they are faces

• The features of the face have been exaggerated.



Observation

Caricature modeling problem can be treat as deformation problem

[1] L. Gao, Y.-K. Lai, D. Liang, S.-Y. Chen, and S. Xia. Efficient and flexible deformation representation for data-driven 
surface modelling. ACM TOG



Our solution

• Build deformation base on normal 3D face dataset

• Formulate 3D caricature generation problem as an optimization 
problem



Our solution

• Build deformation base on normal 3D face dataset

• Formulate 3D caricature generation problem as an optimization 
problem



Deformation representation

T
(deformation

gradient) 

R(Rotation)

S(Scaling/Shear)

log(R)

S-I

{log(R), S-I}



Deformation representation

• Compute deformation gradient 𝑇 of 𝑖𝑡ℎ vertex with edge weight 𝑐𝑖𝑗:

𝐸 𝑇𝑖 = 

𝑗∈𝑁𝑖

𝑐𝑖𝑗|| 𝑝𝑖
′ − 𝑝𝑗

′ − 𝑇𝑖 𝑝𝑖 − 𝑝𝑗 ||2)

• Polar decomposition of 𝑇𝑖 . Decompose 𝑇𝑖 into rotation and scaling/shear parts.

𝑇𝑖 = 𝑅𝑖𝑆𝑖

• Logarithm of rotation part 𝑅𝑖. It allow effective linear combination for log(𝑅)

• Transformation of scaling/shear part 𝑆𝑖. Using 𝑆𝑖 − 𝐼 instead of 𝑆𝑖
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𝑇𝑖 = 𝑅𝑖𝑆𝑖

• Logarithm of rotation part 𝑅𝑖. It allow effective linear combination for log(𝑅)

• Transformation of scaling/shear part 𝑆𝑖. Using 𝑆𝑖 − 𝐼 instead of 𝑆𝑖

Apply it to each vertex, and we can represent the deformation from one mesh to another 
mesh as 𝑓:

𝑓 = log 𝑅𝑖 , 𝑆𝑖 − 𝐼 𝑖 = 1, 2, . . , # 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 }
Note: 𝑇𝑖 can be represent as 
exp 𝐥𝐨𝐠 𝑹 (𝐼 + (𝑺𝒊 − 𝑰))



Deformation base

• Suppose we have 𝑁 face model, we can obtain 𝑁 deformation 
representation 𝐹 = 𝑓𝑙 𝑙 = 1, 2, … , 𝑁}

• To generate a new deformed mesh based on 𝐹. The deformation 
gradient of a new deformed mesh as:

𝑇𝑖 𝑤 = exp(

𝑙=1

𝑛

𝑤𝑅,𝑙 𝒍𝒐𝒈(𝑹𝒍,𝒊))(𝐼 +

𝑙=1

𝑛

𝑤𝑆,𝑙(𝑺𝒍,𝒊 − 𝑰))

{𝑤𝑅,𝑙 , 𝑤𝑆,𝑙} are the combination weights. 



Simple Example

• Special situation: 𝑤𝑅,𝑙 = 𝑤𝑆,𝑙

• Reference model at (0,0), two deformed 
model at (1,0) and (0,1).

• Using combination of deformation basis,

we can obtain some 3D new face.  



Optimization Framework

• Deformation energy 𝐸𝑑𝑒𝑓 defined as:

𝐸𝑑𝑒𝑓 𝑃′, 𝑤 = 

𝑣𝑖∈𝑉

( 

𝑗∈𝑁𝑖

𝑐𝑖𝑗|| 𝑝𝑖
′ − 𝑝𝑗

′ − 𝑇𝑖(𝑤) 𝑝𝑖 − 𝑝𝑗 ||2)

• By minimizing this energy, we are able to determine 𝑃′ given weights 𝑤 = {𝑤𝑅 , 𝑤𝑆′} or obtain the 
combination weights 𝑤 given the deformed mesh 𝑃′.

➢ 𝑃′-𝑠𝑡𝑒𝑝: Given combination weights 𝑤, find best 𝑃′. It equals to solve a linear least 
squares for 𝑃′. 

➢ 𝑤-𝑠𝑡𝑒𝑝: Given deformed 3D model 𝑃′, find best weight 𝑤. This is a non-linear least 
squares problem because of 𝑇𝑖(𝑤). With the Jacobian matrix w.r.t. to the rotation 
weight 𝑤𝑅 and scaling/shear weight 𝑤𝑆′, we can use non-linear least squares 
algorithm to solve it.
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3D Caricature Generation

• Use weakly perspective projection to set up the relationship 
between 3D model and 2D image.

Π 𝑟 Π𝑟𝑝𝑖′ + 𝑡



3D Caricature Generation

• Use weakly perspective projection to set up the relationship
between 3D model and 2D image.

Π 𝑟 Π𝑟𝑝𝑖 + 𝑡



3D Caricature Generation

• Defined landmark fitting loss:

𝐸𝑙𝑎𝑛 Π, 𝑟, 𝑡, 𝑃′ = 

𝑣𝑖∈𝐿

||Π𝑟𝑝𝑖′ + 𝑡 − 𝑞𝑖||
2

to measure the distance of projected 3D landmarks and 2D landmarks



3D Caricature Generation

• The generation problem is formulated as an optimization 
problem:

min
𝑃′,𝑤, Π, 𝑟, 𝑡

𝐸𝑑𝑒𝑓 𝑃′, 𝑤 + 𝜆𝐸𝑙𝑎𝑛(Π, 𝑟, 𝑡, 𝑃′)

To solve it, we also iterate 𝑃′-𝑠𝑡𝑒𝑝 and 𝑤-𝑠𝑡𝑒𝑝 to obtain 3D 
model.



Comparision
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Pipeline



Some results of our methods



Discussion

• Comprehension

• Q&A


