Learning to Recover 3D Human Pose and Shape from 2D Image

Xiaowei Zhou

State Key Lab of CAD&CG Zhejiang University

Cisco: the future of shopping

AW

Phone !

-

in

抖音尬舞机

y

07:44	l ? (
排行机	旁		PT11 A		
付费	免	费 Арр			
1	抖音短视 好玩的人都	见频 『在这	更新		
2	支付宝 - 生活	让生	更新		
3	微信 社交		更新		
4	QQ 社交		更新		

Human pose estimation

Microsoft Xbox

YouTube.com/XboxViewTV

Why Xbox is not so popular?

Expensive Not portable Only indoor

Capture 3D pose and shape with RGB camera

Challenge I: appearance variability

Challenge II: structural variability

Challenge III: single-view ambiguity

infinite number of possible shapes

Learning 3D geometry

3D Prior

Deep learning

Input X

Output Y

Pose estimation as supervised learning

Input image

x_1	y_1	z_1
x_2	y_2	z_2
x_3	y_3	z_3
• •	• •	• •
x_N	y_N	z_N

Human pose

Human can label 2D properties

MPII Dataset (Andriluka et al., 2014)

- 25K images
- 40K poses
- 410 activities from YouTube

Manually label 3D pose and shape ??

Collecting training data using motion capture (MoCap)

Domain difference

MoCap Images

In-the-wild Images

Challenges for learning 3D pose and shape

Lack of training data

Poor generalization ability

Unstructured output

Two stage approach

Only need 2D image-pose pairs to train 2D pose detector Use geometric methods to lift 2D pose to 3D

$$\min_{\boldsymbol{c},\boldsymbol{\bar{R}}} \frac{1}{2} \left\| \boldsymbol{W} - \boldsymbol{\bar{R}} \sum_{i=1}^{k} c_i \boldsymbol{B}_i \right\|_{F}^{2} + \alpha \|\boldsymbol{c}\|_{1}$$

CVPR 2015 CVPR 2016

ICRA 2018

Reconstruction ambiguity

End-to-end approach

CVPR 2017

Using weakly annotated data


```
Z(left knee) > Z(right knee)
 Z(right elbow) > Z(right wrist)
Z(left shoulder) < Z(right shoulder)
  Z(right knee) < Z(left hip)
    Z(\text{left wrist}) = Z(\text{left elbow})
        Z(head) > Z(right ankle)
     Z(right hip) = Z(left hip)
  Z(right ankle) < Z(neck)
    Z(left wrist) < Z(left ankle)
```

Humans **can** annotate ordinal depth relations.

CVPR 2018

Refinement with a reconstruction component

- Recovers a coherent 3D pose
- Simple multi-layer perceptron
- Trained only on MoCap data.

Only using MoCap data for training

Using MoCap + ordinal depth

Quantitative evaluation on Human3.6M

Mean distance to ground truth per joint (mm)

	Direct.	Discuss	Eating	Greet	Phone	Photo	Pose	Purch.	Sitting	SitingD	Smoke	Wait	WalkD	Walk	WalkT
Tekin et al. [49] (CVPR'16)	102.4	147.2	88.8	125.3	118.0	182.7	112.4	129.2	138.9	224.9	118.4	138.8	126.3	55.1	65.8
Zhou et al. [68] (CVPR'16)	87.4	109.3	87.1	103.2	116.2	143.3	106.9	99.8	124.5	199.2	107.4	118.1	114.2	79.4	97.7
Du et al. [14] (ECCV'16)	85.1	112.7	104.9	122.1	139.1	135.9	105.9	166.2	117.5	226.9	120.0	117.7	137.4	99.3	106.5
Zhou et al. [66] (ECCVW'16)	91.8	102.4	96.7	98.8	113.4	125.2	90.0	93.8	132.2	159.0	107.0	94.4	126.0	79.0	99.0
Chen et al. [10] (CVPR'17)	89.9	97.6	90.0	107.9	107.3	139.2	93.6	136.1	133.1	240.1	106.7	106.2	114.1	87.0	90.6
Tome et al. [51] (CVPR'17)	65.0	73.5	76.8	86.4	86.3	110.7	68.9	74.8	110.2	173.9	85.0	85.8	86.3	71.4	73.1
Rogez et al. [40] (CVPR'17)	76.2	80.2	75.8	83.3	92.2	105.7	79.0	71.7	105.9	127.1	88.0	83.7	86.6	64.9	84.0
Pavlakos et al. [32] (CVPR'17)	67.4	71.9	66.7	69.1	72.0	77.0	65.0	68.3	83.7	96.5	71.7	65.8	74.9	59.1	63.2
Nie et al. [60] (ICCV'17)	90.1	88.2	85.7	95.6	103.9	103.0	92.4	90.4	117.9	136.4	98.5	94.4	90.6	86.0	89.5
Tekin et al. [48] (ICCV'17)	54.2	61.4	60.2	61.2	79.4	78.3	63.1	81.6	70.1	107.3	69.3	70.3	74.3	51.8	74.3
Zhou et al. [64] (ICCV'17)	54.8	60.7	58.2	71.4	62.0	65.5	53.8	55.6	75.2	111.6	64.2	66.1	51.4	63.2	55.3
Martinez et al. [25] (ICCV'17)	51.8	56.2	58.1	59.0	69.5	78.4	55.2	58.1	74.0	94.6	62.3	59.1	65.1	49.5	52.4
Ours	48.5	54.4	54.4	52.0	59.4	65.3	49.9	52.9	65.8	71.1	56.6	52.9	60.9	44.7	47.8

Predicting pose & shape

Stickman figures are nice...

Integrating a statistical shape model into CNNs

(c) End-to-end training on real images

CVPR 2018

geometry

欢迎硕士、博士、博士后加入浙大CAD实验室三维视觉小组

Summary

- 3D human sensing is important, interesting and challenging
- 3D from single view is possible with learning-based methods
- But deep learning cannot solve everything and we still need