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3D Face Modeling - Manual
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Manual



3D Face Modeling - Motion Capture
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Motion Capture



3D Scanners

• Structured light, multi-view reconstruction, Laser Scanning, etc 

• Most 3D sensors is quite large and expensive, thus hard to be widely used



usability
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3D Face Applications

• Expression transfer

• Face recognition
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Reconstruction Accuracy

• Sparse landmark

• Color consistency

• Geometry consistency

• Prior knowledge/statistical models: 3DMM, FaceWareHouse, etc…
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Computation Speed

• Fast numerical optimization

• Multi-threaded optimization

• GPU computing

• Learning based: offline training, testing in real-time

�8



Usability

• Equipment
- Laser scanner, motion capture
- RGB-D camera
- RGB camera

• User-specific calibration or Manual assistance
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Outline of This Talk

• Optimization based 3D Face Reconstruction from a Single Image 

• CNN based 3D Dense Face Tracking from Monocular Camera  

• Monocular RGB Camera to monocular RGB-D Camera 

• Normal 3D face to Caricature face



Single Image based Face 
Reconstruction

3D Face Reconstruction with Geometry Details from a Single Image
IEEE Transactions on Image Processing, 2018.
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Reconstruction From Image
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Inverse Process
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Preliminaries - Rendering Equation

• With geometry, albedo and lighting, we can render the image 
according to this equation:
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Image Lighting parameter Geometry Albedo



Preliminaries - 3D Face Representation
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Mean Face Identity Expression Displacement



Preliminaries - 3DMM & FaceWarehouse
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Preliminaries - Lighting
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Inverse Rendering - Coarse
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Albedo Blending

Model Fitting Geometry Refinement



Inverse Rendering - Coarse
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Albedo Blending

Model Fitting Geometry Refinement



Inverse Rendering - Coarse
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AlbedoGeometry Pose Lighting



Inverse Rendering - Geometry
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Albedo Blending

Model Fitting Geometry Refinement



Inverse Rendering - Geometry
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Albedo Blending

Model Fitting Geometry Refinement



Inverse Rendering - Geometry
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Inverse Rendering - Albedo

�24

Albedo Blending

Model Fitting Geometry Refinement



Inverse Rendering - Albedo
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Albedo Blending

Model Fitting Geometry Refinement



Inverse Rendering - Albedo
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Recap - Inverse Rendering Process
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Albedo Blending

Model Fitting Geometry Refinement



Input Images
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Coarse Results
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Fine Results
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Limitation of Inverse Rendering

• The total computation time is 8s on a desktop with a quad-core Intel 
CPU i7, 4GB RAM and NVIDIA GTX 1070 GPU.

• It might fail for challenging cases like large pose face images.
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ResultLandmarks



Optimization      CNN
CNN-based Real-time Dense Face Reconstruction with 

Inverse-rendered Photo-realistic Face Images
IEEE Trans on PAMI, 2018

 32



Proposed Solution

• Synthesize large-scale training pairs including input image and 
output 3D face models.

• A two layers network: coarse network to train the 3DMM 
parameters, and fine network to train the depth displacement.

• Do data augmentation such that the network is robust to 
challenging cases.
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Pipeline

�34

CoarseNet FineNet



Data Augmentation - Coarse
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More Augmentation Examples
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Data Augmentation - Fine
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Data Augmentation - Fine
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Data Augmentation - Fine
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CoarseNet
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• ResNet 18 • Variable: 3DMM parameter, 
pose parameter

• Loss: pixels’ distance



Comparison between Euclidean Loss

�41

Pixel Distance(Pose) Pixel Distance(Geometry)

Parameter L2 loss 
(only learn pose) 29.35

Parameter L2 loss 
(only geometry) 5.43

Proposed Loss 7.69 4.07



FineNet
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• U-Net • Variable: depth displacement

• Loss: euclidean distance



Comparison: Optimization vs CNN
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Optimization

CNN



Comparison: Optimization vs CNN
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Optimization

CNN



Comparison: Optimization vs CNN
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CNNLandmarks Optimization



Reconstruction Results
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Image     Video
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Dense Face Tracking From RGB Video
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Problem Formulation

• Input: a face video sequences

• Output: detailed 3D face geometry, albedo, lighting

• Main challenges: there doesn’t exist public dataset

• Solution: Construct video type datas from images.
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Training Data Construction
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Algorithm Pipeline
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Network Design

• First Frame Network
–Output: pose, geometry
–Structure: Reset-18

• Tracking Network
–Output: pose difference with last frame, geometry, albedo, lighting
–Structure: Reset-18

• Fine-Level Network
–Output: depth displacement for each pixel
–Structure: U-Net [Ronneberger et al. 2015]
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Results - coarse&fine
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Result - Comparison

• [Garrido et al.2016] 
costs 175.5s for 
each frame.

• Ours costs 20ms 
for each frame.
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Pablo Garrido, et.al. Reconstruction of personalized 3d face rigs from monocular video. 
TOG, 2016.



Comparison with GroundTruth
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Input Stereo Ours

• The mean reconstruction error is 1.96mm compared to the 
binocular facial performance capture. 

• Comparable with optimization based approach (1.96mm vs. 
1.8mm) while with much less time.



Result - Video Comparison
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Real-time facial performance capture
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RGB       RGB-D
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Depth Sensors
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...
Price/Size+ -



Kinect-Xbox
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160 px



Sofien. B, et.al. Online Modeling For Realtime Facial Animation, Siggraph 2013
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Pipeline
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Results
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J. Thies, et.al. Real-time Expression Transfer for Facial Reenactment, Siggraph Asia 2015
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Limitations of Existing Methods

• The 3D face modeling is formulated as an optimization problem, 
which includes the following steps. Hard to code!
–depth to point cloud
–rigid registration
–non-rigid registration
–blendshape refinement

• High computation cost. Not easy to port it to mobile platform.
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Our demo
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Normal Face      Caricature
Alive Caricature from 2D to 3D

CVPR 2018, Spotlight Presentation
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Problem
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Blendshapes
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3D Face Representation for extrapolation
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Results
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    (a)3DMM         (b)3DMM(-)    (c)FaceWareHouse     (d)Caricatured 3DMM                         (e) Our Method 



Animoji Demo
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Animoji
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Other Applications
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Video Games SecurityCommunication
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