Real-time 3D Face Reconstruction with Geometry Details

张举勇 中国科学技术大学

Jun 7, 2018

3D Face Modeling - Manual

	- Basser and a second and a second				
₽ <	List Selected Focus	Attributes Sho	ow Help		
	luster1 blendShape1 MarkWithBodyAndHandsRiggedS:tweak9 4 F				
	blendShap	e: blendShape1		Fo Pre Show	cus sets Hide
	➡ Blend Shape Attr	ibutes	_	_	
	Origin world 👻				
	▼ Weight				
	MarkHeadBrowsMi	dDn 0.000	0		
	MarkHeadBrowsM	cUp 2.092			195.3
	MarkHeadBrowsSque	eeze 0.000			
	MarkHeadO	open 0.605			a mark
	MarkHeadJawForv	ward 0.183	- ON		
	MarkHeadBrowOu	utDn 0.000			
	MarkHeadBrowO	utUp 0.000	©———		
	MarkHeaclFr	cwn 1.000		-0	
	MarkHead LwrLi	pDn 0.000			
	MarkHeadLwrL	pUp 0.000			
	MarkHeadIM	outh 0.000			
λ	MarkHeadINa	C.268			
	MarkHeadIS	mile 0.404			
1	Notes: blendShape1				
2					1
A					
	Select	Load Attrib	ules	Copy Tab	

3D Face Modeling - Motion Capture

Motion Capture

3D Scanners

- Structured light, multi-view reconstruction, Laser Scanning, etc
- Most 3D sensors is quite large and expensive, thus hard to be widely used

Related Work Markers

Webcam

[Chen et al, 2015]

[Chai et al, 2003]

[Saragih et al, 2011]

 \bigcirc

usability

[Ma et al, 2008]

 \bigcirc

RGB-D

[Weise et al, 2011]

[Bouaziz et al, 2013]

3D Face Applications

- Expression
- Face recogr

Reconstruction Accuracy

- Sparse landmark
- Color consistency
- Geometry consistency

Prior knowledge/statistical models: 3DMM, FaceWareHouse, etc...

Computation Speed

- Fast numerical optimization
- Multi-threaded optimization
- GPU computing
- Learning based: offline training, testing in real-time

Usability

- Equipment
 - Laser scanner, motion capture
 - RGB-D camera
 - RGB camera
- User-specific calibration or Manual assistance

Outline of This Talk

- Optimization based 3D Face Reconstruction from a Single Image
- CNN based 3D Dense Face Tracking from Monocular Camera
- Monocular RGB Camera to monocular RGB-D Camera
- Normal 3D face to Caricature face

struction from a Single Image ng from Monocular Camera ular RGB-D Camera

Single Image based Face Reconstruction

3D Face Reconstruction with Geometry Details from a Single Image IEEE Transactions on Image Processing, 2018.

Reconstruction From Image

Inverse Process

Preliminaries - Rendering Equation

 With geometry, albedo and lighting, we can render the image according to this equation:

 $C_S(p) = L^T \phi(n_p) \cdot \rho_p$ Albedo Image Lighting parameter Geometry

14

Preliminaries - 3D Face Representation

Preliminaries - 3DMM & FaceWarehouse

Preliminaries - Lighting

17

Inverse Rendering - Coarse

Inverse Rendering - Coarse

Inverse Rendering - Coarse

$$\chi = \left\{ \frac{\alpha_{\mathrm{id}}, \alpha_{\mathrm{exp}}, \alpha_{\mathrm{alb}}, s, pin}{\mathsf{Geometry}, \mathsf{Albedo}} \right\}$$

$$E(\chi) = E_{\mathrm{con}} + w_{\mathrm{lan}} E_{\mathrm{lan}}$$

$$E_{\mathrm{con}}(\chi) = \frac{1}{|P|} \sum_{p \in P} ||C_S(p) - C_I(p)||^2$$

$$E_{\mathrm{lan}}(\chi) = \frac{1}{|\mathcal{F}|} \sum_{f_i \in \mathcal{F}} ||f_i - (\Pi R V_i + t)||^2$$

$$E_{\mathrm{reg}}(\chi) = \sum_{i=1}^{100} \left[\left(\frac{\alpha_{\mathrm{id},i}}{\sigma_{\mathrm{id},i}} \right)^2 + \left(\frac{\alpha_{\mathrm{alb},i}}{\sigma_{\mathrm{alb},i}} \right)^2 \right] + \sum_{i=1}^{79} \left(\frac{\alpha_{\mathrm{d}}}{\sigma_{\mathrm{d}}} \right)^2$$

 $tch, yaw, roll, t_x, t_y, L\}$ Lighting Pose

 $_{\rm n} + w_{\rm reg} E_{\rm reg}$

 $\left(\frac{\alpha_{\exp,i}}{\sigma_{\exp,i}}\right)^2$

Inverse Rendering - Geometry

Inverse Rendering - Geometry

Inverse Rendering - Geometry

$E(\mathbf{d}) = E_{\text{con}} + \mu_1 \|\mathbf{d}\|_2^2 + \mu_2 \|\mathbf{Ld}\|_1$

 $E_{\rm con}(\chi) = \frac{1}{|P|} \sum_{p \in P} ||C_S(p) - C_I(p)||^2$

Inverse Rendering - Albedo

Inverse Rendering - Albedo

Inverse Rendering - Albedo

Recap - Inverse Rendering Process

Input Images

Coarse Results

Fine Results

Limitation of Inverse Rendering

- The total computation time is 8s on a desktop with a quad-core Intel CPU i7, 4GB RAM and NVIDIA GTX 1070 GPU.
- It might fail for challenging cases like large pose face images.

Landmarks

Result

Optimization — CNN

CNN-based Real-time Dense Face Reconstruction with Inverse-rendered Photo-realistic Face Images IEEE Trans on PAMI, 2018

Proposed Solution

- Synthesize large-scale training pairs including input image and output 3D face models.
- A two layers network: coarse network to train the 3DMM parameters, and fine network to train the depth displacement.
- Do data augmentation such that the network is robust to challenging cases.

Pipeline

CoarseNet

Data Augmentation - Coarse

Inverse Rendering

More Augmentation Examples

Data Augmentation - Fine

Data Augmentation - Fine

Data Augmentation - Fine

CoarseNet

ResNet 18

layer name	output size	18-layer
conv1	112×112	
conv2_x	56×56	$\begin{bmatrix} 3 \times 3, 64 \\ 3 \times 3, 64 \end{bmatrix} \times 2$
conv3_x	28×28	$\begin{bmatrix} 3 \times 3, 128 \\ 3 \times 3, 128 \end{bmatrix} \times 2$
conv4_x	14×14	$\begin{bmatrix} 3 \times 3, 256 \\ 3 \times 3, 256 \end{bmatrix} \times 2$
conv5_x	7×7	$\begin{bmatrix} 3 \times 3, 512 \\ 3 \times 3, 512 \end{bmatrix} \times 2$

- Variable: 3DMM parameter, pose parameter
- Loss: pixels' distance

 $Proj(\mathcal{P}) = \Pi R(\bar{S}_p + A_{p,id} \cdot \alpha_{id} + A_{p,exp} \cdot \alpha_{exp}) + t$

 $\mathcal{L}_{\text{pose}} = \|Proj(\mathcal{P}_q) - Proj(\mathcal{P}_{n,\text{pose}}, \mathcal{P}_{q,\text{geo}})\|_2^2$

 $\mathcal{L}_{\text{geo}} = \|Proj(\mathcal{P}_g) - Proj(\mathcal{P}_{n,\text{geo}}, \mathcal{P}_{g,\text{pose}})\|_2^2$

$$\mathcal{L} = w \cdot \mathcal{L}_{\text{pose}} + (1 - w) \cdot \mathcal{L}_{\text{geo}}$$

Comparison between Euclidean Loss

	Pixel Distance(Pose)	Pixel Distance(Geometry)
Parameter L2 loss (only learn pose)	29.35	
Parameter L2 loss (only geometry)		5.43
Proposed Loss	7.69	4.07

41

FineNet

Loss: euclidean distance

➡ conv 3x3, ReLU

Comparison: Optimization vs CNN

Optimization

CNN

Comparison: Optimization vs CNN

Optimization

CNN

Comparison: Optimization vs CNN

Landmarks

Optimization

Reconstruction Results

Dense Face Tracking From RGB Video

Input

CoarseNet Output

FineNet Output

Problem Formulation

- Input: a face video sequences
- Output: detailed 3D face geometry, albedo, lighting
- Main challenges: there doesn't exist public dataset
- Solution: Construct video type datas from images.

Training Data Construction

Algorithm Pipeline

Network Design

- First Frame Network
 - -Output: pose, geometry
 - -Structure: Reset-18
- Tracking Network
 - -Output: pose difference with last frame, geometry, albedo, lighting
 - -Structure: Reset-18
- Fine-Level Network
 - -Output: depth displacement for each pixel
 - -Structure: U-Net [Ronneberger et al. 2015]

Results - coarse&fine

CoarseNet Output

FineNet Output

Result - Comparison

- [Garrido et al.2016] costs 175.5s for each frame.
- Ours costs 20ms for each frame.

Input

[Garrido et al. 2016]

Ours

Pablo Garrido, et.al. Reconstruction of personalized 3d face rigs from monocular video.

Comparison with GroundTruth

Input Stereo [Garrido

- The mean reconstruction error is 1.96mm compared to the binocular facial performance capture.
- Comparable with optimization based approach (1.96mm vs. 1.8mm) while with much less time.

[Garrido et al. 2016] Ours

Result - Video Comparison

Input [Shi et al.

[Shi et al. 2014] [Garrido et al. 2016] Ours

Real-time facial performance capture

RGB --> RGB-D

Depth Sensors

+

Price/Size

Kinect-Xbox

Sofien. B, et.al. Online Modeling For Realtime Facial Animation, Siggraph 2013

Pipeline

Results

6

J. Thies, et.al. Real-time Expression Transfer for Facial Reenactment, Siggraph Asia 2015

 $E(\boldsymbol{\mathcal{P}}) = E_{\rm emb}(\boldsymbol{\mathcal{P}}) + w_{\rm col}E_{\rm col}(\boldsymbol{\mathcal{P}}) + w_{\rm lan}E_{\rm lan}(\boldsymbol{\mathcal{P}}) + w_{\rm reg}E_{\rm reg}(\boldsymbol{\mathcal{P}})$

Limitations of Existing Methods

- which includes the following steps. Hard to code!
 - -depth to point cloud
 - -rigid registration
 - -non-rigid registration
 - -blendshape refinement
- High computation cost. Not easy to port it to mobile platform.

The 3D face modeling is formulated as an optimization problem,

Our demo

Normal Face — Caricature Alive Caricature from 2D to 3D CVPR 2018, Spotlight Presentation

Problem

Blendshapes

3D Face Representation for extrapolation

Results

Animoji Demo

Animoji

Select RGBD/Animoji:

Animoji	*
elect on/off line:	
online	*
elect Avatar:	
dog	-

Run 🖕

Stop

Other Applications

Video Games

Security

Acknowledgments

Yudong Guo, Luo Jiang, Boyi Jiang, Lin Cai, Hao Li Bailin Deng, Ligang Liu, Jianfei Cai, Jianmin Zheng, Yu-kun Lai

