2018 [nternatlona hgonference on Robotlcs and Automatlon

ICRA2018
Report

related work in Robotics and Automation

Liu Jian, Shan Dong University

Email: jianliu2006 @gmail.com

‘| May 21-25, 2018

—The anbane Convention| & Exhibition Centre

Brisbane, Australia |
f



® Main Points

 |CRA Introduction
* |CRA 2018 Summary

* Robotic Grasping




ICRA Introduction

* ICRA: IEEE International Conference on Robotics and Automation __

e TRO(IEEE Transaction on Robotics, IF 4.264 ),IJRR(International ’f
Journal of Robotics Research, IF 4.047) "I

e Deadline: 9.15 f

e Conference Date: 20-25 May
* PaperPlaza: https://ras.papercept.net/conferences/scripts/start.pl
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® |ICRA Introduction

e Exhibition: Academics and industry
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® |CRA Introduction

e Exhibition: Academics and industry
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® |CRA Introduction

e Exhibition: Academics and industry
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® |CRA2018 Summary

B Submissions
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® |CRA2018 Summary

B Submissions
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® |CRA2018 Summary

B Presenting

40.8% acceptance rate
3 1 workshops

\6 forums
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® |CRA2018 Summary

B Presenting

35

IEEE ICRA Best Conference Paper Award

IEEE ICRA Best Student Paper Award

IEEE ICRA Best Paper Award in Automation

IEEE ICRA Best Paper Award in Cognitive Robotics
IEEE ICRA Best Paper Award on Human-Robot Interaction (HRI)
IEEE ICRA Best Paper Award in Robot Manipulation

IEEE ICRA Best Paper Award in Medical Robotics

IEEE ICRA Best Paper Award on Multi-Robot Systems

IEEE ICRA Best Paper Award in Service Robotics

10 IEEE ICRA Best Paper Award in Robot Vision

11. IEEE ICRA Best Paper Award on Unmanned Aerial Vehicles
12. IEEE ICRA 2018 Award for the Most Influential Paper

Lo NOUEWNPRE




® |CRA2018 Summary

B Presenting

™
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Top 10 Keywords

Deep Learning in Robotics and
Automation

Motion and Path Planning

Localization

SLAM

Learning and Adaptive Systems

Multi-Robot Systems

Autonomous Vehicle Navigation

Soft Material Robotics

Mapping

Optimization and Optimal Control

124 papers;
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- 71 papers;
4 award papers
4 award papers
3 award papers

107 papers;
3 award papers

61 papers;
4 award papers

53 papers;
1 award papers

- 52 papers;
1 award papers

52 papers;
0 award papers

ICRAE]



® |CRA2018 Summary

B Presenting

3681...

More Papers »
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Robotic Grasping

related work in Robotics and Automation




Muln-Modal

Gripper

Global

Object-Grasp
Representation

Known

Prior Object
Knowledge

Grasp Hypotheses

Familiar

Object Grasp
Features Synthesis

Data-Driven

lInknown

® A good autonomous grasping strategy is able

to ensure stability, task compatibility and
adaptability to new objects.



® Robotic Grasping

* Analysis Approach
» Force closure
» Precision grasp: contact points computation
» Known Object: Model, Physical properties (gravity, friction coefficient)
» Collision-free environment
» Sensitive to uncertainty (disturbance)




® Robotic Grasping

* (Caging grasp
» The target object cannot escape from the cage
» power grasp: contact surface
» Robust to uncertainty: unknown object

» 2D caging grasp (planar cage), 3D caging grasp (circle cage, sphere cage)

Planar Cage Sphere Cage Circle Cage



® Robotic Grasping

e Data-driven approach
» Robotic grasp of novel object via Deep Learning
» Grasp representation: grasp rectangle (Manually label)




ICRA2018: Robotic Grasping
Analysis Approach



® Manipulation —grasping
B Analysis approach:

Grasping Objects Big and Small: Human
Heuristics Relating Grasp-type and Object Size

Ammar Kothari, John Morrow, Ravi Balasubramanian, and Cindy

Grimm
Robotics, Oregon State University, USA

* Goal: Understand human heuristics for
mapping object size to grasp pre-shape 7

» Created a grasp taxonomy for a 3 finger
manipulator based on human grasps

» Administered online surveys with training
videos to gather shape space ranges for pre-

shapes from people Given a pre-shape,

* Used data to build confidence regions based largest and smallest

on shape size to guide planners on choosing a objects that people
grasp pre-shape believe can be grasped

75% Confidence
il




® Manipulation —grasping

B Contribution

e Online data collection that captures
human preference about what grasp
types are preferred for different
fundamental object shapes and sizes.

B Motivation

* Few studies focused on human
preference for robotic grasp.

e Human preferences for grasp type
based on object size and shape was
previously unavailable to robotic grasp
planning algorithms.

* Reduce the search space.

GRASP TAXONOMY

For Barrett hand

Pa__ll_*n | P_a_d |

Cylindrical Spherical  Disk Cylindrical Spherical Disk
#11 #10, 30 #6,7,8, 31 #13, 14, 26, #9, 12, 18
27, 28, 33 22,24
2 VF 3+ VF
#1,2, #4, 5,

3, 15 17

é Barrett Grasp Preshapes

“ar
Power F Precision F Palm F Claw

Unable to
perform grasps

Side
#16,20,21,
23,25,29, 32

Other
#19

Tree level organization

Main opposing force
Target Object

# of Virtual Fingers (ifamy

Fig: Grasp taxonomy adapted for Barrett hand, based on GRASP

(Human) Taxonomy [5]. Grasps with red boundaries, such as those utilizing
the side of the finger as the main opposing force, were not achievable due

to limitations with the Barrett hand’s kinematics. Four grasp preshapes were
identified for the Barrett hand and were applied to all achievable grasp types.
These grasp types are named at the bottom of the figure based on the main

opposing forces and human inferred intent of each preshape grasp

Grasping objects big and small: Human heuristics relating grasp-type and object size



® Manipulation —grasping
B Analysis approach:

Grasping Flat Objects by Exploiting Non-
Convexity of the Object and Support Surface

lason Sarantopoulos, Yannis Koveos and Zoe Doulgeri
Information Technologies Institute, Center of Research and Technology Hellas,
Thessaloniki, Greece

» Proposes a grasp strategy which exploits
environmental contact for grasping domestic
flat objects on support surfaces, inspired by
human strategies.

« Assumes object point cloud availability.

« Considers cases where state-of-the-art grasp

planners may not find a solution.
. . Grasping a plate using the
Uses the non-convex geometry of the object- non-convex space (red

surface combination like in plates or handles. points)



® Manipulation —grasping

B Contribution

e A contact exploiting grasp strategy for domestic flat objects placed or hinged on support surfaces.

e support surface which are characterized by non-convexity in their object-surface combination

e opposable grasp

B Motivation

e Collision free space around target object.

e The flatter an object is, the more difficult to grasp it without colliding with the support surface.
 humans compensated for the uncertainties introduced by impaired vision by using contact with the

support surface. _—
cupboard
plate %7 %7
x n projection
— g,
able projection (a) 1Ist phase: IGS (b) 2nd phase: Landing (c) 21:1(] phase: Contact
reached detection
(a) Non-convex (b) Non-convex

book plate } )/
H""a‘ : :

(d) 2nd phase: Sliding (e) 2nd phase: PGS (f) 3rd phase: FGS
reached Reached

table projection table projection

(c) Convex (d) Convex

Grasping Flat Objects by Exploiting Non-Convexity of the Object and Support Surface



® Manipulation —grasping
B Analysis approach:

Planning High-Quality Grasps using
Mean Curvature Object Skeletons

Nikolaus Vahrenkamp, Eduard Koch,

Mirko Wachter and Tamim Asfour
Institute for Anthropomatics and Robotics
Karlsruhe Institute of Technology (KIT), Germany

=y

- Efficient generation of high-quality grasps in =L :
terms of robustness and force-closure rates -, o =

« Combined analysis of topological object o a“”’
information and local surface structure o e .7."L j‘ s *-..—;14

« Different grasping strategies to generate “J ¥
precision and power grasps A . l i & ' ’ i

 Evaluation with KIT and YCB real-world

E:Le;; model databases and several robotic N, & g/& ?\W
*NE L)%



® Manipulation — grasping

B Part-based approach
* Generation of grasp candidates through object shape approximation with primitives

e Performance:
1.Not overall objects or its parts might be well-represented by primitive shapes
2.perform poorly when used for grasping applications and propose instead to set a priori a number of elementary shapes, for a

instance, SQ(superquadrics) that cannot be further split
3.simple representation of the object will sacrifice potentially promising candidate grasps to poor geometry approximation

Box Decomposition SQ Decomposition
K.H " ubner and D. Kragic, “Selection of robot pre-grasps using box-based C. Goldfeder, P. K. Allen, C. Lackner, and R. Pelossof, “Grasp planning

shape approximation,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., via decomposition trees,” in Proc. IEEE Int. Conf. Robot.
2008, pp. 1765-1770. Autom.,2007,pp. 4679-4684.

Primitive shape Decomposition
A.T. Miller, S. Knoop, H. I. Christensen, and P. K. Allen, “Automatic
grasp planning using shape primitives,” in Proc. IEEE Int. Conf. Robot.
Autom., 2003, pp. 1824-1829.



® Manipulation —grasping

B Part-based approach
e Generation of grasp candidates through Reeb graph segments

e Performance:
1. the purely topology-based approaches do not take into account geometry features, is that it is not possible to discriminate

between classes of objects that have the same topological structure

Reeb Graph

A 3D shape segmentation approach for robot grasping by parts Jacopo Aleotti, Stefano Caselli RAS2012



® Manipulation —grasping

B Contribution

o Skeleton-based grasp planner : Integrating Topological information and local surface structure to generate robust

robotic grasp

e Building mean curvature skeleton and segmenting the object to identify graspable regions

e Grasp strategies: precision and power grasps
B Motivation

e Force-closure approach: small disturbances lead to unstable grasping configuration.
e Part-based approach(primitive shapes, superquadrics, Reeb graph segments, voxelized object

presentation):randomized grasp generation

Object

Skeleton

" Object Segmentﬂ ||

Local and Global Object Properties

k.

|

Grasping
Strategies

T

Grasping J__I —
Hypotheses _

Valid Grasps J .

Planning High-Quality Grasps using Mean Curvature Object Skeletons

The grasp planning process




® Manipulation —grasping
B Analysis approach:

Transferring Grasping Skills to Novel Instances
by Latent Space Non-Rigid Registration

Diego Rodriguez, Corbin Cogswell, Seongyong Koo

and Sven Behnke
Autonomous Intelligent Systems, University of Bonn, Germany

o J'_’_‘l"' ____‘r }.‘ 1"\. .._ff.!; r.] ‘

 Transfer of grasping poses of novel objects by 3 3 5 ? S
learning a latent shape space of the category ‘;‘
of the object. H b T U
» The shape space is built registering training %2 2 fa7 R fr

samples with CPD and subspace methods.

due to learned category-level information

* New instances can be generated through
Iinterpolation and extrapolation in the shape
space

« Reconstruction of partially observed instances ‘
L
BRI ]
|'“

-1.“*



® Manipulation —grasping

B Contribution
Propose an approach for transferring grasping skill from known objects to novel instances of an object category.

Canonical
Model

Latent space non-rigid registration (Coherent Point Drift (CPD) & 51 J 52 JE %)
Generate novel instances through interpolation and extrapolation in this shape space
Novel shapes from partial views

Training
Samples Calcula.te Latent (shape) Space
Defromations

w Ti=C+GW, Design Matrix
Y: a
R

Latent Space

e

Wy | pcaEMm

Optimize Energy
Function

\
m 7, = C + GW; :
/.’wif :
Tr=C+GW C-

Movel Instance

Second Principal Component

First Principal Component

Canomical Model

Learning of the latent space

Transferring Grasping Skills to Novel Instances by Latent Space Non-Rigid Registration

Inferred Shape



® Manipulation —grasping
B Analysis approach:

Grasp Planning for Load Sharing in
Collaborative Manipulation

Usama Tariq, Rajkumar Muthusamy and Ville Kyrki
Department of Electrical Engineering and Automaion,
Aalto University, Finland

» Decentralized grasp planning for collaborative
manipulation of unknown objects.

« Grasp analysis based on task specific
minimization of grasp wrenches.

* On-line system for human-robot collaborative
lifting proposed.

« Demonstrated optimal load sharing between

agents during manipulation. Human-robot
collaborative lift up




® Manipulation — grasping

B Contribution
* Robot grasp planning for load sharing
B Motivation

e the load sharing has not been addressed from the perspective of planning cooperative grasps

Grasp Planning for Load Sharing in Collaborative Manipulation



® Manipulation —grasping

B Human Grasp Detection and Decision Making

Point
Target Cloud > Human Grasp
Extraction Detection
Point cdoud Hmf:;g{::ﬂ]
4 Grasp A 4
Pre Planner Candidates | Post Planner
. Grasp Collaborative
(§ Center of Gravity Approximation ) Candidate Robot Grasps Generation — > Grasp
vject Planner
¥ Human Grasp Location Robot Grasp Decision Estumate
Hand Mndel
Ranked grasps
Model —
E atab as] Reachability
Check
Optimal Grasp

Grasp Planning for Load Sharing in Collaborative Manipulation



® Manipulation —grasping
B Analysis approach:

Geometric In-Hand Regrasp Planning: Alternating
Optimization of Finger Gaits and In-Grasp Manipulation

Balakumar Sundaralingam and Tucker Hermans,
School of Computing, University of Utah, USA

* We generate plans for moving from an

initial fingertip grasp to desired fingertip
grasp.

» We can generate plans on any arbitrary
object, given the object’'s mesh.

» Our method performs alternating

optimization of fingertip relocation
(finger-gaiting) and object reposing (in- —
grasp manipulation).

» We solve the alternating optimizations

through sequential quadratic Example sequence
programming. generated from our planner

https://robot-learning.cs.utah.edu/project/in_hand_manipulation




® Manipulation — grasping

B Problem Definition
* In-hand regrasping, the problem of moving from an initial grasp to a desired grasp on an object using the

dexterity of a robot’s fingers for precision grasps

B Motivation
e Cluttered spaces limit grasp configurations

—
w

[4 W

Fr

|

yoi
L ﬂf
Initial Grasp Desired Grasp

Geometric In-Hand Regrasp Planning: Alternating Optimization of Finger Gaits and In-Grasp Manipulation



® Manipulation —grasping

B Problem Definition
* Find a sequence of hand joint configurations to move to the desired grasp keeping the object in-hand

Optimization Primitives
Fingertip Relocation Object Reposing

=
N T (
- ¢

In-grasp manipulation (IG)

e OPT1:Optimization for finger gaits
» Force-closure

* OPt2:Optimization for object reposing
» In-grasp manipulation

e Alternating Optimization

O
L3
N N
| | \ o -
w FG — 1G FG - IG | e —» L&
N NS TS A\
Altemating Optimization | Alternating Optimization t |
Iteration 1 Iteration 2
Initial Grasp Desired Grasp

Geometric In-Hand Regrasp Planning: Alternating Optimization of Finger Gaits and In-Grasp Manipulation

- o o o e s s



® Manipulation —grasping

B Contribution

* An optimization based planner for relocating fingertips on an object surface

 Asequence planner to regrasp an object in-hand from an initial fingertip grasp to a desired fingertip grasp.
e Solution is collision-free and guarantees kinematic feasibility

 Work on arbitrary object mesh

f«E | _ZI- | ) : i R
\ \ Yo  ae
- % “ % 1} hh_ ‘ Lh. ;'L- ‘

- o W - B
- T‘\r—__
@ R

Geometric In-Hand Regrasp Planning: Alternating Optimization of Finger Gaits and In-Grasp Manipulation



® Manipulation —grasping
B Analysis approach:

Caging Loops in Shape Embedding Space:
Theory and Computation

Jian Liu', Shiqging Xin', Zengfu Gao, Kai Xu?,
Changhe Tu' and Baoquan Chen’

1Shandong University, 2National University of Defense Technology, China

» A novel method for synthesizing multi-
scale caging grasps, based on topological
analysis of shape-aware distance field in
shape embedding space.

» Arigorous study on the relation between
field topology and caging loops, based on
Morse theory.

» A grasping system implemented with robot
gripper, along with thorough evaluations
and comparisons on both 3D printed and
real-world objects.




® Manipulation —grasping
B Geometry or topology based 3D caging grasp

This paper presented a topology-based approach that is applicable to objects with
holes. It used non-trivial first homology group to identify graspable loops and

measure the linking between the robot fingers and object with Gauss linking
integrals.

Analysis:

1.The topological loop is non-trivial

2. It is too dependent on the topological information of a 3D object,
but it ignores the geometric feature.

3. It is sensitive to quality of point cloud.

Pokorny, Florian T., Johannes A. Stork and Danica Kragic. “Grasping objects with holes: A topological approach.” 2013 IEEE International
Conference on Robotics and Automation (2013): 1100-1107.



® Manipulation —grasping
B Geometry or topology based 3D caging grasp

This paper proposed an idea of using geodesic balls on the object's surface in
order to approximated the maximal contact surface between a grasp and an
object. Two types of caging grasps are developed: circle caging and sphere

caging, where circle caging means wrap almost completely around an
elongated part of an object.

Zarubin, Dmitry, Florian T. Pokorny, Marc Toussaint and Danica Kragic. “Caging complex objects with geodesic balls.” 2013 IEEE/RSJ International
Conference on Intelligent Robots and Systems (2013): 2999-3006.



® Manipulation — grasping
B Geometry or topology based 3D caging grasp

With the help of a Reeb graph and geodesic distance field ,this paper considers
geometry information and topology analysis to compute local minimal rings.
Isocurves generated by geodesic distance field are used as initial rings. Then
the initial rings are stretched for local minimal rings by topological branches
based on the Reeb graph.

[

Kwok, Tsz-Ho, Weiwei Wan, Jia Pan, Charlie C. L. Wang, Jianjun Yuan, Kensuke Harada and Yong Chen. “Rope caging and grasping.” 2016 IEEE
International Conference on Robotics and Automation (ICRA) (2016): 1980-1986.



® Manipulation — grasping
B Geometry or topology based 3D caging grasp

' 1 |[% @)
ﬁ_r I i iii
|
Mesh Skeleton with
Double Forks
(d) S A
’ Verification
&
| ol _
} Synthesis
Algorithms
Mesh Meck (0

: @©f [ -
| ]
' W W =3

]
|
| . Motion (h}'
| \? B Planning |'
| Point Cloud ~ Mesh Shortest Loop work in [22, 29. iiﬂl:

Varava, Anastasiia, Danica Kragic and Florian T. Pokorny. “Caging Grasps of Rigid and Partially Deformable 3-D Objects With Double Fork and Neck
Features.” IEEE Transactions on Robotics 32 (2016): 1479-1497.



® Manipulation — grasping
M Challenge

e (Caging loops constrained on the target surfaces.
e Model or holes may be too small for the fingers to pass through.
e Non-convexity of the caging loop will lead to Gripper-object collision.

Jian Liu, Shiqging Xin, Zengfu Gao, Kai Xu, Changhe Tu and Baoquan Chen, “Caging Loops in Shape Embedding Space: Theory and
Computation”, IEEE International Conference on Robotics and Automation (ICRA 2018), Brisbane, Australia, May 21-25, 2018.



® Manipulation — grasping
M Challenge

e (Caging loops should be defined in shape embedding space.
e Feasible grasp would be enclosing the object with a loop encompassing multiple handles.

Jian Liu, Shiqging Xin, Zengfu Gao, Kai Xu, Changhe Tu and Baoquan Chen, “Caging Loops in Shape Embedding Space: Theory and
Computation”, IEEE International Conference on Robotics and Automation (ICRA 2018), Brisbane, Australia, May 21-25, 2018.



® Manipulation — grasping

B Overview

()

An overview of our caging loop based grasping system. (a) Our system setup, composed of one robotic arm and two depth cameras.
(b) The incomplete point cloud scanned by the two depth cameras. (c) The r-offset surface of the reconstructed target object that
defines the grasping space. (d) A p-based distance field and two Morse saddle points (blue). (e) Two caging loop candidates induced

by the two Morse saddle points. (f) The yellow loop is filtered since it is far from being locally shortest at the base point (red). (g) A
simulation of grasping. (h) Real grasping conducted by our system.

Jian Liu, Shiqging Xin, Zengfu Gao, Kai Xu, Changhe Tu and Baoquan Chen, “Caging Loops in Shape Embedding Space: Theory and
Computation”, IEEE International Conference on Robotics and Automation (ICRA 2018), Brisbane, Australia, May 21-25, 2018.



® Manipulation — grasping
M Results

Test on High-genus Models in Various Sizes Test on Models with Various Levels of Noise and
Geometric Feature

Test on Real Objects

Jian Liu, Shiqging Xin, Zengfu Gao, Kai Xu, Changhe Tu and Baoquan Chen, “Caging Loops in Shape Embedding Space: Theory and
Computation”, IEEE International Conference on Robotics and Automation (ICRA 2018), Brisbane, Australia, May 21-25, 2018.



® Manipulation —grasping

B Summary

* Special tasks, target object
e Dynamic grasp (human, shape-aware)



ICRA2018: Robotic Grasping
Data-driven Approach




® Manipulation — perception, learning

B Contribution

 Deep learning approach to robotic grasping of unknown objects

» Suitable grasp pose from multiple grasping/approach direction and wrist orientation.

B Motivation

e Limitation of Data-driven approach: :
1) They neither account for stability nor feasibility of the grasp

|
2) Grasping/approach direction and wrist orientation
3) Design types of end-effectors d2 — «~— 0g
03
54 55

(a) Grasping directions

RN
. v
b
iy o g Wy y

(b) Wrist orientations
Learning Object Grasping for Soft Robot Hands - MIT

Learning 6-DOF Grasping Interaction via Deep Geometry-aware 3D Representations — Google Brain
Dex-Net 3.0: Computing Robust Vacuum Suction Grasp Targets in Point Clouds using a New Analytic Model and Deep Learning
Grasping of Unknown Objects using Deep Convolutional Neural Networks based on Depth Images - KIT



® Manipulation —perception, learning
B Learning & perception

Grasping of Unknown Objects using DCNNs
based on Depth Images

Philipp Schmidt, Nikolaus Vahrenkamp,

Mirko Wachter and Tamim Asfour
Institute for Anthropomatics and Robotics
Karlsruhe Institute of Technology (KIT), Germany

* Deep learning approach for grasping unknown
objects based only on depth image as input

» Qutput: Full end-effector poses with arbitrary
approach directions

« Training data generated using analytical grasp
planner — scalable!

« Evaluation using the KIT, YCB object model
datasets and a big data grasping database in
simulation and in robot experiments




® Manipulation — perception, learning

B Problem Identify
e Estimating suitable grasp configuration of unknown objects with partial view using Deep learning
approach

B Strategy
1. Training : Closure grasps by analytic grasp planners + simulation

pyanEn
nﬁunamu

n:“.nn o Conﬁguratlon

Known objects Grasp planner Multi-view + grasp pose

Grasping of Unknown Objects using Deep Convolutional Neural Networks based on Depth Images - KIT



® Manipulation —perception, learning

B Learning & perception

Learning 6-DOF Grasping Interaction
via Deep Geometry-aware 3D Representations

Xinchen Yan’, Jasmine Hsu'!, Mohi Khansari?, Yunfei Bai?,
Arkanath Pathak', Abhinav Gupta’, James Davidson', Honglak Lee’
1Google, 2X Inc, *University of Michigan

Mental Geometry-Aware Representation

3D Geometry
Grasping scene
P Object l
Local View
Gripper l
Grasping
Outcome

Learning grasping interactions from demonstrations with deep geometry-aware
representations. First, we learn to build mental representation by reconstructing
the 3D scene with 2.5D training data. Second, we learn to predict grasping
outcome with its internal representation.



® Manipulation — perception, learning

B Problem Identify
e Estimating suitable grasp configuration of unknown objects with partial view using Deep learning
approach

B Strategy
1. Training : Closure grasps by grasp physical engine + simulation

Shape Encoder Shape Decoder Perspective Transformer

Global — Target depth
Shape ﬂ

Sampler
™ e

Input viewpoint
& Camera projection

Input viewpoint

Input RGBD

Generated occupancy grid

Identity unit

= @ Local shape

Local I (unsupervised)

Sha
Input shape 1ape

1
1
I
I
|
! Sampler X
I 1
Input action ‘ '
- | |
1 |
\ ' Input action :
L A 1
), 2 A _
- ’ State unit Target outcome

3D shape generation from
single-view RGBD input

Input state State Encoder Outcome predictor

Learning 6-DOF Grasping Interaction via Deep Geometry-aware 3D Representations — Google Brain



® Manipulation —perception, learning
B Learning & perception
Dex-Net 3.0: Computing Robust
Vacuum Suction Grasp Targets in Point Clouds
using a New Analytic Model and Deep Learning

Jeffrey Mahler?, Matthew Matl', Xinyu Liu’,

Albert Li', David Gealy', and Ken Goldberg?2
'Dept. of EECS, UC Berkeley 2Dept. of IEOR, UC Berkeley

« We propose a compliant suction contact
model for (1) the formation of a vacuum seal = Perimeter

and (2) the abllity to resist external wrenches &) Ef:;"“

* We use the model to generate Dex-Net 3.0,
a dataset of 2.8 million point clouds, suction
grasps, and grasp robustness labels

« We train a deep Grasp Quality Convolutional Initial State
Neural Network (GQ-CNN) on Dex-Net 3.0 to v
classify robust suction targets in point clouds
Contact State

» Grasps planned with the GQ-CNN achieve

up to 98% success on novel objects in Our Seal Formation Model
experiments with an ABB YuMi



® Manipulation — perception, learning

B Problem Identify
e Estimating suitable grasp configuration of unknown objects with partial view using Deep learning
approach

B Strategy

3D Object Dataset (1,500) E Dex-Net 3.0 Dataset (2.8 Million)

Prd

1. Training : robust suction grasps by physical analysis ( seal formation & resist gravity) + simulation

== Perimeter ’
== Flexion
== Cone k

; Initial State ' ’ ’
Contact State ’ ‘ '

Suction Grasp Perturbations Robustness Point Cloud Depth Image  Training Datapoint

+*

Successes Failures

Dex-Net 3.0: Computing Robust Vacuum Suction Grasp Targets in Point Clouds using a New Analytic Model and Deep Learning
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B Learning & perception

Learning Object Grasping for Soft Robot Hands

Changhyun Choi, Wilko Schwarting, Joseph DelPreto, and Daniela Rus

Computer Science & Artificial Intelligence Lab
Massachusetts Institute of Technology, USA

« A 3D deep convolutional neural network
(3D CNN) approach for grasping unknown
objects with soft hands.

» Our soft hands guided by the 3D CNN
algorithm show 87% successful grasping
on previously unseen objects.

« Comparative experiments show the =
robustness of our approach with respectto  g,ccessful example grasps
noise and occlusions. of our 3DCNN approach

- - L.



® Manipulation — perception, learning

B Problem Identify
* Estimating suitable grasp configuration of unknown objects with partial view using Deep Learning
approach

B Strategy
2. Training : trial-and-error scheme (point cloud + physical grasp pose)

Y l 5“
Voxel e
Transformation G

point (_lClud P voxel grid g’

: )

voxel grld G

Planar ﬁ
& |
Segmentation % 3D CNN — )
grasp direction 0 >

grasp pose Xg(é,dj)

8 M @

segmented clouds & wrist orientation @ )

Learning Object Grasping for Soft Robot Hands - MIT



® Manipulation —grasping

B Summary

* Robust/feasible grasp configuration
 New types of robot hand



Thank you!
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