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 ICRA Introduction

• ICRA: IEEE International Conference on Robotics and Automation
• TRO(IEEE Transaction on Robotics, IF 4.264 ),IJRR(International 

Journal of Robotics Research, IF 4.047)
• Deadline:  9.15
• Conference Date: 20-25 May
• PaperPlaza: https://ras.papercept.net/conferences/scripts/start.pl

https://ras.papercept.net/conferences/scripts/start.pl


 ICRA Introduction

• Exhibition: Academics and industry
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 ICRA2018 Summary

 Submissions

2586paper submitted

1981 submitted to ICRA

605 submitted to RAL



 ICRA2018 Summary

 Submissions

Number Country

613 USA

230 China

159 Germany

115 Japan

89 France

85 UK

83 Italy

82 South Korea

75 Australia

62 Canada



 ICRA2018 Summary

 Presenting

1056papers presented

40.8% acceptance rate

31 workshops

6 forums



 ICRA2018 Summary

 Presenting

35Award Papers (3%)

1. IEEE ICRA Best Conference Paper Award
2. IEEE ICRA Best Student Paper Award
3. IEEE ICRA Best Paper Award in Automation
4. IEEE ICRA Best Paper Award in Cognitive Robotics
5. IEEE ICRA Best Paper Award on Human-Robot Interaction (HRI)
6. IEEE ICRA Best Paper Award in Robot Manipulation 
7. IEEE ICRA Best Paper Award in Medical Robotics
8. IEEE ICRA Best Paper Award on Multi-Robot Systems
9. IEEE ICRA Best Paper Award in Service Robotics
10. IEEE ICRA Best Paper Award in Robot Vision
11. IEEE ICRA Best Paper Award on Unmanned Aerial Vehicles
12. IEEE ICRA 2018 Award for the Most Influential Paper



 ICRA2018 Summary

 Presenting

Top 10 Keywords



 ICRA2018 Summary

 Presenting

3681Authors



Robotic Grasping
related work in Robotics and Automation



 A good autonomous grasping strategy is able 
to ensure stability, task compatibility and 
adaptability to new objects.



 Robotic Grasping

• Analysis Approach
 Force closure
 Precision grasp: contact points computation
 Known Object: Model, Physical properties (gravity, friction coefficient)
 Collision-free environment
 Sensitive to uncertainty (disturbance) 



 Robotic Grasping

• Caging grasp 
 The target object cannot escape from the cage
 power grasp: contact surface 
 Robust to uncertainty: unknown object
 2D caging grasp (planar cage), 3D caging grasp (circle cage, sphere cage) 

Planar Cage Sphere Cage Circle Cage



 Robotic Grasping

• Data-driven approach
 Robotic grasp of novel object via Deep Learning
 Grasp representation: grasp rectangle (Manually label)



ICRA2018: Robotic Grasping
Analysis Approach



 Analysis approach:

 Manipulation – grasping



 Manipulation – grasping

Grasping objects big and small: Human heuristics relating grasp-type and object size

 Contribution
• Online data collection that captures 

human preference about what grasp 
types are preferred for different 
fundamental object shapes and sizes.

 Motivation
• Few studies focused on human 

preference for robotic grasp.
• Human preferences for grasp type 

based on object size and shape was 
previously unavailable to robotic grasp 
planning algorithms.

• Reduce the search space.

Fig: Grasp taxonomy adapted for Barrett hand, based on GRASP
(Human) Taxonomy [5]. Grasps with red boundaries, such as those utilizing
the side of the finger as the main opposing force, were not achievable due
to limitations with the Barrett hand’s kinematics. Four grasp preshapes were
identified for the Barrett hand and were applied to all achievable grasp types.
These grasp types are named at the bottom of the figure based on the main
opposing forces and human inferred intent of each preshape grasp 



 Analysis approach:

 Manipulation – grasping



 Manipulation – grasping

Grasping Flat Objects by Exploiting Non-Convexity of the Object and Support Surface

 Contribution
• A contact exploiting grasp strategy for domestic flat objects placed or hinged on support surfaces.
• support surface which are characterized by non-convexity in their object-surface combination 
• opposable grasp 
 Motivation
• Collision free space around target object.
• The flatter an object is, the more difficult to grasp it without colliding with the support surface.
• humans compensated for the uncertainties introduced by impaired vision by using contact with the

support surface.



 Analysis approach:

 Manipulation – grasping



 Manipulation – grasping

 Part-based approach
• Generation of grasp candidates through object shape approximation with primitives
• Performance:

1.Not overall objects or its parts might be  well-represented by primitive shapes
2.perform poorly when used for grasping applications and propose instead to set a priori a number of elementary shapes, for a 

instance, SQ(superquadrics) that cannot be further split
3.simple representation of the object will sacrifice potentially promising candidate grasps to poor geometry approximation

Box Decomposition
K.H¨ubner and D. Kragic, “Selection of robot pre-grasps using box-based
shape approximation,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.,
2008, pp. 1765–1770.

Primitive shape Decomposition
A. T. Miller, S. Knoop, H. I. Christensen, and P. K. Allen, “Automatic
grasp planning using shape primitives,” in Proc. IEEE Int. Conf. Robot.
Autom., 2003, pp. 1824–1829.

SQ Decomposition
C. Goldfeder, P. K. Allen, C. Lackner, and R. Pelossof, “Grasp planning 
via decomposition trees,” in Proc. IEEE Int. Conf. Robot. 
Autom.,2007,pp. 4679–4684.



 Manipulation – grasping

 Part-based approach
• Generation of grasp candidates through Reeb graph segments
• Performance:

1. the purely topology-based approaches do not take into account geometry features, is that it is not possible to discriminate 
between classes of objects that have the same topological structure

A 3D shape segmentation approach for robot grasping by parts Jacopo Aleotti, Stefano Caselli RAS2012



 Manipulation – grasping

Planning High-Quality Grasps using Mean Curvature Object Skeletons 

 Contribution
• Skeleton-based grasp planner : Integrating Topological information and local surface structure to generate robust 

robotic grasp
• Building mean curvature skeleton and segmenting the object to identify graspable regions
• Grasp strategies: precision and power grasps
 Motivation
• Force-closure approach: small disturbances lead to unstable grasping configuration.
• Part-based approach(primitive shapes, superquadrics, Reeb graph segments, voxelized object 

presentation):randomized grasp generation

The grasp planning process



 Analysis approach:

 Manipulation – grasping



 Manipulation – grasping

Transferring Grasping Skills to Novel Instances by Latent Space Non-Rigid Registration 

 Contribution
• Propose an approach for transferring grasping skill from known objects to novel instances of an object category.
• Latent space non-rigid registration (Coherent Point Drift (CPD) 连贯点集漂移)
• Generate novel instances through interpolation and extrapolation in this shape space 
• Novel shapes from partial views

Learning of the latent space 



 Analysis approach:

 Manipulation – grasping



 Manipulation – grasping

Grasp Planning for Load Sharing in Collaborative Manipulation 

 Contribution
• Robot grasp planning for load sharing
 Motivation
• the load sharing has not been addressed from the perspective of planning cooperative grasps



 Manipulation – grasping

Grasp Planning for Load Sharing in Collaborative Manipulation 

 Human Grasp Detection and Decision Making



 Analysis approach:

 Manipulation – grasping



 Manipulation – grasping

Geometric In-Hand Regrasp Planning: Alternating Optimization of Finger Gaits and In-Grasp Manipulation 

 Problem Definition
• In-hand regrasping, the problem of moving from an initial grasp to a desired grasp on an object using the 

dexterity of a robot’s fingers for precision grasps
 Motivation
• Cluttered spaces limit grasp configurations

Initial Grasp Desired Grasp



 Manipulation – grasping

Geometric In-Hand Regrasp Planning: Alternating Optimization of Finger Gaits and In-Grasp Manipulation 

 Problem Definition
• Find a sequence of hand joint configurations to move to the desired grasp keeping the object in-hand

• OPT1:Optimization for finger gaits
 Force-closure

• OPt2:Optimization for object reposing
 In-grasp manipulation

• Alternating Optimization



 Manipulation – grasping

Geometric In-Hand Regrasp Planning: Alternating Optimization of Finger Gaits and In-Grasp Manipulation 

 Contribution
• An optimization based planner for relocating fingertips on an object surface
• A sequence planner to regrasp an object in-hand from an initial fingertip grasp to a desired fingertip grasp.
• Solution is collision-free and guarantees kinematic feasibility
• Work on arbitrary object mesh



 Analysis approach:

 Manipulation – grasping



 Geometry or topology based 3D caging grasp

 Manipulation – grasping

This paper presented a topology-based approach that is applicable to objects with 
holes. It used non-trivial first homology group to identify graspable loops and 
measure the linking between the robot fingers and object with Gauss linking 
integrals.

Analysis:
1.The topological loop is non-trivial
2. It is too dependent on the topological information of a 3D object, 
but it ignores the geometric feature.
3. It is sensitive to quality of point cloud.

Pokorny, Florian T., Johannes A. Stork and Danica Kragic. “Grasping objects with holes: A topological approach.” 2013 IEEE International 
Conference on Robotics and Automation (2013): 1100-1107.



 Geometry or topology based 3D caging grasp

 Manipulation – grasping

Zarubin, Dmitry, Florian T. Pokorny, Marc Toussaint and Danica Kragic. “Caging complex objects with geodesic balls.” 2013 IEEE/RSJ International 
Conference on Intelligent Robots and Systems (2013): 2999-3006.

This paper proposed an idea of using geodesic balls on the object's surface in 
order to approximated the maximal contact surface between a grasp and an 
object. Two types of caging grasps are developed: circle caging and sphere 
caging, where circle caging  means wrap almost completely around an 
elongated part of an object.



 Geometry or topology based 3D caging grasp

 Manipulation – grasping

Kwok, Tsz-Ho, Weiwei Wan, Jia Pan, Charlie C. L. Wang, Jianjun Yuan, Kensuke Harada and Yong Chen. “Rope caging and grasping.” 2016 IEEE 
International Conference on Robotics and Automation (ICRA) (2016): 1980-1986.

With the help of a Reeb graph and geodesic distance field ,this paper considers 
geometry information and topology analysis to compute local minimal rings. 
Isocurves generated by geodesic distance field are used as initial rings. Then 
the initial rings are stretched for local minimal rings by topological branches 
based on the Reeb graph. 



 Geometry or topology based 3D caging grasp

 Manipulation – grasping

Varava, Anastasiia, Danica Kragic and Florian T. Pokorny. “Caging Grasps of Rigid and Partially Deformable 3-D Objects With Double Fork and Neck 
Features.” IEEE Transactions on Robotics 32 (2016): 1479-1497.



 Challenge

 Manipulation – grasping

Jian Liu, Shiqing Xin, Zengfu Gao, Kai Xu,  Changhe Tu and Baoquan Chen, “Caging Loops in Shape Embedding Space: Theory and 
Computation”, IEEE International Conference on Robotics and Automation (ICRA 2018), Brisbane, Australia, May 21-25, 2018.

• Caging loops constrained on the target surfaces.
• Model or holes may be too small for the fingers to pass through.
• Non-convexity of the caging loop will lead to Gripper-object collision.



 Challenge

 Manipulation – grasping

Jian Liu, Shiqing Xin, Zengfu Gao, Kai Xu,  Changhe Tu and Baoquan Chen, “Caging Loops in Shape Embedding Space: Theory and 
Computation”, IEEE International Conference on Robotics and Automation (ICRA 2018), Brisbane, Australia, May 21-25, 2018.

• Caging loops should be defined in shape embedding space.
• Feasible grasp would be enclosing the object with a loop encompassing multiple handles.



 Overview

 Manipulation – grasping

Jian Liu, Shiqing Xin, Zengfu Gao, Kai Xu,  Changhe Tu and Baoquan Chen, “Caging Loops in Shape Embedding Space: Theory and 
Computation”, IEEE International Conference on Robotics and Automation (ICRA 2018), Brisbane, Australia, May 21-25, 2018.

An overview of our caging loop based grasping system. (a) Our system setup, composed of one robotic arm and two depth cameras. 
(b) The incomplete point cloud scanned by the two depth cameras. (c) The r-offset surface of the reconstructed target object that 
defines the grasping space. (d) A p-based distance field and two Morse saddle points (blue). (e) Two caging loop candidates induced 
by the two Morse saddle points. (f) The yellow loop is filtered since it is far from being locally shortest at the base point (red). (g) A 
simulation of grasping. (h) Real grasping conducted by our system. 



 Results

 Manipulation – grasping

Jian Liu, Shiqing Xin, Zengfu Gao, Kai Xu,  Changhe Tu and Baoquan Chen, “Caging Loops in Shape Embedding Space: Theory and 
Computation”, IEEE International Conference on Robotics and Automation (ICRA 2018), Brisbane, Australia, May 21-25, 2018.

Test on High-genus Models in Various Sizes Test on Models with Various Levels of Noise and 
Geometric Feature

Test on Real Objects



 Summary

 Manipulation – grasping

• Special tasks, target object
• Dynamic grasp (human, shape-aware)



ICRA2018: Robotic Grasping
Data-driven Approach



 Manipulation – perception, learning

 Contribution
• Deep learning approach to robotic grasping of unknown objects
• Suitable grasp pose from multiple grasping/approach direction and wrist orientation.  
 Motivation
• Limitation of Data-driven approach: 

1) They neither account for stability nor feasibility of the grasp
2)   Grasping/approach direction and wrist orientation
3)   Design types of end-effectors

Learning Object Grasping for Soft Robot Hands - MIT
Learning 6-DOF Grasping Interaction via Deep Geometry-aware 3D Representations – Google Brain
Dex-Net 3.0: Computing Robust Vacuum Suction Grasp Targets in Point Clouds using a New Analytic Model and Deep Learning 
Grasping of Unknown Objects using Deep Convolutional Neural Networks based on Depth Images - KIT



 Learning & perception

 Manipulation –perception, learning



 Manipulation – perception, learning

 Problem Identify
• Estimating suitable grasp configuration of unknown objects with partial view using Deep learning 

approach 

 Strategy
1. Training : Closure grasps by analytic grasp planners + simulation

Known objects Grasp planner Multi-view + grasp pose

Grasping of Unknown Objects using Deep Convolutional Neural Networks based on Depth Images - KIT



 Learning & perception

 Manipulation –perception, learning



 Manipulation – perception, learning

Learning 6-DOF Grasping Interaction via Deep Geometry-aware 3D Representations – Google Brain

 Problem Identify
• Estimating suitable grasp configuration of unknown objects with partial view using Deep learning 

approach 

 Strategy
1. Training : Closure grasps by grasp physical engine + simulation

3D shape generation from 
single-view RGBD input 



 Learning & perception

 Manipulation –perception, learning



 Manipulation – perception, learning

Dex-Net 3.0: Computing Robust Vacuum Suction Grasp Targets in Point Clouds using a New Analytic Model and Deep Learning 

 Problem Identify
• Estimating suitable grasp configuration of unknown objects with partial view using Deep learning 

approach 

 Strategy
1. Training : robust suction grasps by physical analysis ( seal formation & resist gravity) + simulation



 Learning & perception

 Manipulation –perception, learning



 Manipulation – perception, learning

 Problem Identify
• Estimating suitable grasp configuration of unknown objects with partial view using Deep Learning 

approach 

 Strategy
2.  Training : trial-and-error scheme (point cloud + physical grasp pose)

Learning Object Grasping for Soft Robot Hands - MIT



 Summary

 Manipulation – grasping

• Robust/feasible grasp configuration
• New types of robot hand 



Thank you!
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