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• Matrix-valued shape functions

• Geometric & physical conditions Inter-element 
continuity
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Conditions
Physical condition

- Reconstruct global “representative” deformation

- Global harmonic displacement at rest shape

[Kharevych 2009]
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- Contribute 6 more constraints in 3D  
   for each element
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M = I- Harmonic:
M = @2 /@F 2 - -harmonic:

(   -constitutive model,    -deformation gradient) F

rank-4 tensor

Smooth regularization
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Basis discretization
• Our basis functions are discretely represented

piecewise bilinear function
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• Coarse element generally appears to be “stiffer”.

• Discontinuous basis functions make system “softer”.

Proper balance 
is crucial!
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Simulation

• Calculation of deformation gradient
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Simulation

• Calculation of deformation gradient
1 +1
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• Quadrature: standard Gaussian quadrature 
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Results



Comparison with trilinear basis

Traditional trilinear basis function
turns out to be overstiffening
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Relation to [Nesme 2009]

Translation invariance
Diagonal basis

Rotation invariance Psi-harmonic
Node interpolation

Far boundary vanishing

Such conditions prohibit 
a proper balance

[Nesme 2009]
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Relation to DDFEM
Results of DDFEM will be likely impacted by …

Parameters for regressionTraining set

representative of 
element sample

Our method is free of such issue
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Acceleration

Fine mesh:
# vert:   31337
# elem: 26176

Coarse mesh:
# vert:   4627
# elem: 3272
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Future work

• Varying shape functions for very large deformation.

• Coarsening of dynamical system with inhomogeneous mass distribution.

• Applied to other problems like acoustics.

• Problem-aware basis construction.
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