Numerical Coarsening using Discontinuous Shape Functions

Jiong Chen¹, Hujun Bao¹, Tianyu Wang¹, Mathieu Desbrun², Jin Huang¹ ¹ State Key Lab of CAD&CG, Zhejiang University ² Caltech

Challenge

Inhomogeneous

nonlinear

Inhomogeneous

nonlinear

Require fine mesh

Inhomogeneous

nonlinear

Require fine mesh

Coarse mesh

Challenge

Inhomogeneous

nonlinear

Require fine mesh

Coarse mesh

Challenge

Inhomogeneous

nonlinear

Require fine mesh

Coarse mesh

Previous works

[Kharevych 2009]

[Torres 2016]

[Nesme 2009]

Previous works

[Kharevych 2009]

[Torres 2016]

Not applicable for nonlinear elasticity

Previous work

[Chen 2015]

Data-driven approach to regress the coarse elastic model

Previous work

Data-driven approach to regress the coarse elastic model

Rely on data set and

 $\nabla u = \sum \nabla N_i(X) u_i$

 $K_{ij}(u) = \int \nabla N_i^T : \frac{\partial^2 \Psi}{\partial \nabla u^2} : \nabla N_j$

$$\nabla u = \sum_{i} \nabla N_i(X) u_i$$

 $\nabla u = \sum \nabla N_i(X) u_i$

$$\nabla u = \sum_{i} \nabla N_i(X) u_i$$

Homogenize the constitutive model

$$\nabla u = \sum_{i} \nabla N_i(X) u_i$$

Homogenize the constitutive model

Approximate the solution space better

• Matrix-valued shape functions

Matrix-valued shape functions

$$N_i^H: \Omega \to \mathbb{R}^{d \times d}$$

Matrix-valued shape functions

$$N_i^H: \Omega \to \mathbb{R}^{d \times d}$$

Geometric & physical conditions

• Matrix-valued shape functions

$$N_i^H: \Omega \to \mathbb{R}^{d \times d}$$

Geometric & physical conditions

Element-wise interpolation

$$\forall X \in \Omega^H, u(X) = \sum_{X_i \in \Omega^H} \Lambda$$

Element-wise interpolation

$$\forall X \in \Omega^H, u(X) = \sum_{X_i \in \Omega^H} \Lambda$$

$$u(X) = R\left[X + \sum_{i} N_i^H(X)(R^T x_i^H)\right]$$

 $\left| -X_{i}^{H} \right| -X$

Element-wise interpolation

$$\forall X \in \Omega^H, u(X) = \sum_{X_i \in \Omega^H} \Lambda$$

$$u(X) = R\left[X + \sum_{i} N_i^H(X)(R^T x_i^H)\right]$$

 $\mathbf{V}_i^H(X)u_i^X$

Element-wise interpolation

$$\forall X \in \Omega^H, u(X) = \sum_{X_i \in \Omega^H} \Lambda$$

$$u(X) = R\left[X + \sum_{i} N_{i}^{H}(X) R^{T} x_{i}^{H}\right]$$

Element-wise interpolation

$$\forall X \in \Omega^H, u(X) = \sum_{X_i \in \Omega^H} \Lambda$$

$$u(X) = R \left[X + \sum_{i} N_i^H(X) (R^T x_i^H) \right]$$

Element-wise interpolation

$$\forall X \in \Omega^H, u(X) = \sum_{X_i \in \Omega^H} \Lambda$$

$$u(X) = R \left[X + \sum_{i} N_i^H(X) (R^T x_i^H) \right]$$

Element-wise interpolation

$$\forall X \in \Omega^H, u(X) = \sum_{X_i \in \Omega^H} \Lambda$$

$$u(X) = R \left[X + \sum_{i} N_i^H(X) (R^T x_i^H) \right]$$

 $-X_i^H$ -X

Element-wise interpolation

$$\forall X \in \Omega^H, u(X) = \sum_{X_i \in \Omega^H} \Lambda$$

$$u(X) = R\left[X + \sum_{i} N_i^H(X)(R^T x_i^H + \sum_{i} N_i^H x_i^H + \sum_{i} N_i^H(X)(R^T x_i^H + \sum_{i} N_i^H(X)(R^T x_i^H + \sum_{i} N_i^H x_i^H + \sum_{i} N_i^H(X)(R^T x_i^H + \sum_{i} N_i^H x_i^H + \sum_{i} N_i^H x_i^H + \sum_{i} N_i^H x_i^H + \sum_{i} N_i^H x$$

 $\mathbf{V}_i^H(X)u_i^X$

Element-wise interpolation

$$\forall X \in \Omega^H, u(X) = \sum_{X_i \in \Omega^H} \Lambda$$

$$u(X) = R\left[X + \sum_{i} N_{i}^{H}(X)(R^{T}x_{i}^{H} - X_{i}^{H})\right]$$

 $\mathbf{V}_i^H(X)u_i^X$

Element-wise interpolation

$$\forall X \in \Omega^H, u(X) = \sum_{X_i \in \Omega^H} \Lambda$$

$$u(X) = R\left[X + \sum_{i} N_{i}^{H}(X)(R^{T}x_{i}^{H} - X_{i}^{H})\right]$$

 $\mathbf{V}_i^H(X)u_i^X$

Geometric conditions

Geometric conditions

- Translational invariance

$$\sum_{i} N_i^H(X) = \mathbb{I}$$

Geometric conditions

i

- Translational invariance

$$\sum_{i} N_{i}^{H}(X) = \mathbb{I}$$
- Rotational invariance
$$\sum_{i} N_{i}^{H}(X)[X_{i}^{H}]_{\times} = \sum_{i} N_{i}^{H}(X)[X_{i}^{H}]_{\times} = \sum_{i} N_{i}^{H}(X)[X_{i}^{H}]_{\times} = \sum_{i} N_{i}^{H}(X)[X_{i}^{H}]_{\times}$$

Geometric conditions

- Translational invariance $\sum_{i} N_i^H(X) = \mathbb{I}$ - Rotational invariance $\sum_{i} N_i^H(X) [X_i^H]_{\times} = [X]_{\times}$ - Node interpolation $N_i^H(X_j^H) = \delta_{ij}\mathbb{I}$

Physical condition
Conditions

Physical condition

- Reconstruct global "representative" deformation

$$h_{ab}(X) = \sum_{i} N_i^H(X)h_a$$

 $_{ab}(X_i^H)$

Conditions

Physical condition

- Reconstruct global "representative" deformation

$$h_{ab}(X) = \sum_{i} N_i^H(X)h_a$$

- Global harmonic displacement at rest shape

Conditions

Physical condition

- Reconstruct global "representative" deformation

$$h_{ab}(X) = \sum_{i} N_i^H(X)h_i$$

- Global harmonic displacement at rest shape

- Contribute 6 more constraints in 3D for each element

Numerical conditioning

Smooth regularization

 $\int_{\Omega} \operatorname{tr} \left((\nabla N_i^H)^T : M : \nabla N_i^H \right) dX$

Numerical conditioning

Smooth regularization

 $\int_{\Omega} \operatorname{tr} \left((\nabla N_i^H)^T : M : \nabla N_i^H \right) dX$

rank-4 tensor

Numerical conditioning

Smooth regularization

$$\int_{\Omega} \operatorname{tr} \left((\nabla N_i^H)^T : M \right)$$

- Two Options of metric
 - Harmonic: $M = \mathbb{T}$
 - Ψ -harmonic: $M = \partial^2 \Psi / \partial F^2$

(Ψ -constitutive model, F-deformation gradient)

rank-4 tensor

Summary

Finding basis ->

Summary

Finding basis -> Solve a constrained quadratic programming per element

 $\int_{\Omega} \operatorname{tr} \left((\nabla N_i^H)^T \right)$ s.t. $\sum_{i} N_i^H (I)$ $\sum N_i^H(\mathbf{1}$ $\sum N_i^H$ (_ $N_i^H(X_j^H)$

$$: M : \nabla N_i^H dX$$

$$X) = \mathbb{I}$$

$$X)[X_i^H]_{\times} = [X]_{\times}$$

$$X)h_{ab}(X_i^H) = h_{ab}(X)$$

$$) = \delta_{ij}\mathbb{I}$$

Basis discretization

Our basis functions are discretely represented

 $N_i^H(X) = \sum n_{ij} N_j^h(X)$ i

piecewise bilinear function

Balance

 $N_{p,i}(X_j^h) \neq N_{q,i}(X_j^h) \longrightarrow u_p(X_j^h) \neq u_q(X_j^h)$

• Our optimized basis function does not guarantee C^0 -continuity

Balance

 $N_{p,i}(X_j^h) \neq N_{q,i}(X_j^h) \longrightarrow u_p(X_j^h) \neq u_q(X_j^h)$

- **Coarse element** generally appears to be "stiffer".
- **Discontinuous** basis functions make system "softer".

• Our optimized basis function does not guarantee C^0 -continuity

Make balance

harmonic on Ω^H trilinear on Ω^H Ψ -harmonic on Ω^H

Make balance

Simulation

Calculation of deformation gradient

$$\nabla_X x = \nabla_X u + \mathbf{I} = (R_e - \mathbf{I}) + \sum_i R_e \otimes (\mathbf{I}_i)$$

$$= R_e + \left(\sum_i R_e \otimes (R_e^T x_i - X_i) : \frac{\partial}{\partial x_i}\right)$$

+1

Simulation

Calculation of deformation gradient

$$\nabla_X x = \nabla_X u + \mathbf{I} = (R_e - \mathbf{I}) + \sum_i R_e \otimes (\mathbf{I} + \mathbf{I}) + \sum_i$$

$$= R_e + \left(\sum_i R_e \otimes (R_e^T x_i - X_i) : \frac{\partial x_i}{\partial x_i}\right)$$

Quadrature: standard Gaussian quadrature

 $(R_e^T x_i - X_i) : \frac{\partial N_i^H}{\partial X} + \mathbf{I} - \mathbf{1}$ $\frac{\partial N_i^H}{\partial \xi} \right) \left(\sum_j \frac{\partial \overline{N}_j^H}{\partial \xi} \right)^{-1}$

+1

 ΔL

+1

Results

Comparison with trilinear basis

Traditional trilinear basis function turns out to be overstiffening

Our method

[Kharevych 2009]

Our method

[Kharevych 2009]

Our method

[Kharevych 2009]

Diagonal basis Translation invariance Rotation invariance

Far boundary vanishing Node interpolation Psi-harmonic

Diagonal basis Translation invariance Rotation invariance

Far boundary vanishing Node interpolation Psi-harmonic

Diagonal basis Translation invariance Rotation invariance

Results of DDFEM will be likely impacted by ...

Results of DDFEM will be likely impacted by ...

Results of DDFEM will be likely impacted by ...

Parameters for regression

Results of DDFEM will be likely impacted by ...

Parameters for regression

Acceleration

Fine mesh: # vert: 31337 *# elem:* 26176

Coarse mesh: # vert: 4627 # elem: 3272

Future work
Varying shape functions for very large deformation.

- Varying shape functions for very large deformation.

Coarsening of dynamical system with inhomogeneous mass distribution.

- Varying shape functions for very large deformation.
- Coarsening of dynamical system with inhomogeneous mass distribution.
- Applied to other problems like acoustics.

- Varying shape functions for very large deformation.
- Coarsening of dynamical system with inhomogeneous mass distribution.
- Applied to other problems like acoustics.
- Problem-aware basis construction.

Thanks! Q&A