
From TensorFlow to Taichi:
A GAN for Computational Photography
and A Library for Computer Graphics

Presented by
Yuanming Hu 胡渊鸣 , MIT CSAIL

Part I
Exposure: A White-Box Photo Post-Processing Framework

ACM Transactions on Graphics, to be presented at SIGGRAPH 2018
Yuanming Hu1,2 Hao He1,2 Chenxi Xu1,3 Baoyuan Wang1 Stephen Lin1

1Microsoft Research 2MIT CSAIL 3Peking University

“Magic”

Exposure + 2.40

Highlight -78

White balance

Temperature 2600
Tint +23

Clarity + 63

Vibrance +75

Shadow + 70

…

Can machines learn this process?

✦ Input dataset:
๏ A set of RAW photos
๏ A set of retouched target photos

✦ Goal:
๏ Post-process raw photos

following the style similar to the
training dataset

… …

Input Output

Training Dataset

Learned
Model

Test photo

Retouched photo

Learning-based Photo Processing
Bychkovsky et al. 2011, Learning Photographic Global Tonal Adjustment with a

Database of Input / Output Image Pairs

MIT-Adobe FiveK Dataset

x5000
+

Learning-based
Global Tonal
Adjustment

Learning-based Photo Processing
Yan et al. 2014, Automatic Photo Adjustment Using Deep Neural Networks

local quadratic color transformation coefficients

Learning-based Photo Processing
Gharbi et al., Deep Bilateral Learning for Real-Time Image Enhancement

Deep learning
Input Output

Hidden
Layer

Dataset

Deep neural networks
…

Inputs

…

Outputs

500px.com

http://500px.com

…

Inputs

…

Outputs

Outputs

Image Translation

[Zhu et al. 2017, Unpaired Image-to-Image Translation
using Cycle-Consistent Adversarial Networks]

[Isola et al. 2017, Image-to-Image Translation
with Conditional Adversarial Networks]

CycleGAN
[Zhu et al. 2017, Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks]

(Conditional) Generative Adversarial Networks (c-GANs)

Real Images

Generator

Encoder/
decoder-based

CNN

Input

Real sample

“Fake” sample

Discriminator

Classification
CNN

Loss

……

Loss

X
Y

Generator

Encoder/
decoder-based

CNN

[Zhu et al. 2017, Unpaired Image-to-Image Translation
using Cycle-Consistent Adversarial Networks]

256x256 px256x256 px

CycleGAN,
Zhu et al.

Deep Bilateral Learning
Gharbi et al.

Local color transform learning
Yan et al.

?

High Resolution Unpaired Training Human
Understandable

Tonal Adjustment Learning
Bychkovsky et al. 2011

End-to-end
Processing

Deep learning

Input Output
Hidden
Layer

… …

Inputs Outputs

Black Box A
(Unpaired data)

Black Box B
(deep neural networks)

Traditional deep-learning approaches generate
black boxes (CNNs) out of existing ones (datasets).

To understand the magic of photo retouching,
we need a white box result.

Modelling Photo Post-Processing

✦ People retouch photos step-by-step

✦ Feedback is important
✦ In many software such feedback is done in real-time
✦ Human usually does not specify a concrete adjustment number (say, “Exposure +

1.32”)

Modelling Photo Post-Processing

Retouch photos
like a human artist!

States Actions States Actions States

Reinforcement Learning

✦ People retouch photos step-by-step
๏ I.e., transit from one state to another

✦ Feedback is important
๏ Adjust (e.g., using policy gradients) the

behaviour according to rewards

Actions: Filters with Their Gradients

Filters

Curve representation

Generator
CNN

Differentiable
Retouching

Model

Real sample

“Fake” sample

Discriminator

Wasserstein
GAN Critic,

gradient
penalized

Loss
Rewards

Raw Images

…

…

Retouched Images

Environment: Wasserstein GAN-GP

Agent

Results

Comparisons with deconvolution-based
methods
✦ Higher quality,

resolution

CycleGAN Ours

An
“Infinite-

Resolution”
GAN

Pix2pix (paired data needed) Ours (unpaired training)

An
“Infinite-

Resolution”
GAN

Reverse Engineering

Summary: A White-box Framework
✦ A learnable model for photo post-processing

๏ Resolution independent
๏ Content preserving
‣ No need for cycle-consistency

๏ Human-understandable
๏ “Reverse-engineering”

✦ RL+GAN for optimisation

✦ What’s next?
๏ More robust learning
๏ Better face?

✦ Open-source: https://github.com/yuanming-hu/exposure

https://github.com/yuanming-hu/exposure

Submission ID: 1019

Part II
Taichi: An Open-Source Computer Graphics Library

Yuanming Hu, MIT CSAIL

http://taichi.graphics/

http://taichi.graphics/

Your amazing ray tracer

float output[1920][1080][3]

How to display this image on screen?
How to save this image on disk?

How to …?

(Students’ Feedbacks)

(Fundamentals of Computer Graphics, Course Website)

Q: How can I display the image rendered by my ray tracer?
A: …We recommend using the library OpenCV. Reason: OpenCV is easy to learn
and use. With only 20 lines of code you can read and display an image…. Please

focus your time on implementing the ray tracer itself.

OpenCV (Open Source Computer Vision Library)

We do not even have a light-weight library to programmatically display an image.

OpenGL? Qt? SDL?
Unity?

Don’t we have such a library?

Don’t we have such a library?
✦ Rendering: Mitsuba [Jakob 2010], PBRT [Pharr et al. 2016], Lightmetrica [Otsu

2015], POV-Ray [Buck and Collins 2004] …

✦ Geometry processing: libigl [Jacobson et al. 2013], MeshLab [Cignoni et al.
2008], CGAL [Fabri and Pion 2009] …

✦ Simulation: Bullet [Coumans et al. 2013], ODE [Smith et al. 2005], ArcSim
[Narain et al. 2004], VegaFEM [Sin et al. 2013], MantaFlow [Thuerey and Pfa
2017], Box2D [Cao 2011], PhysBAM [Dubey et al. 2011], SPlisHSPlasH [Bender
et al. 2016] …

✦ Unfortunately, more frequently we need to build our own system (low-level
engineering) instead of reusing (at a high level) the aforementioned libraries
reuse

Infrastructure

The key stuff The key stuff

Infrastructure

The key stuff

Infrastructure

The key stuff The key stuff

Reusability: “I can’t even build it.”

Question: Why do you have to be a “genius” just to compile a software??

Innovative
Ideas

Rapid
Development

Solid
Software

Engineering

Slow Progress

(or no sleep)

Poor re
usability

 or

reproducibility
 or

extensib
ility

 or

perfo
rm

ance

(closed-so
urce)

People’s c
hoice?

Hard to achieve high novelty
(i.e., hard to have your paper accepted)

?

The trade-off…

Reusable infrastructure
that provides

good software engineering
(for free)

Building a Reusable Infrastructure

✦ Accessible, portable, extensible, and high-performance infrastructure, that is
reusable and tailored for researchers in computer graphics-related fields

✦ Easy to achieve some of the features, but having them all is hard.

✦ Reusability is especially hard.

✦ More discussions: https://arxiv.org/abs/1804.09293

https://arxiv.org/abs/1804.09293

“Why do we need something tailored
for graphics? Why not just reuse Boost

or Eigen?”

Eigen?

“Is it possible to get performance and user-
friendliness simultaneously?”

“Heisenbugs”

Complexity:
SFINAE
RAII
RTTI
ABI

Long Compilation Time

Portability
(E.g. how to create a folder using portable code?
No answer until C++17 (std::filesystem))

Hard-to-read error message

The cost of performance

"C makes it easy to shoot yourself in the foot; C++ makes it harder, but
when you do it blows your whole leg off” - Bjarne Stroustrup

http://www.stroustrup.com/bs_faq.html#really-say-that

http://www.stroustrup.com/bs_faq.html#really-say-that

What do we need Taichi for?

2016 2017 2018 2019
doc, testing ready

2020 2021

A library of
SIGGRAPH papers An infrastructure for computer graphics research

An code-base for graphics education & propagation
(#include “taichi.h”)

An infrastructure for graphics
(commercial) deployment

✦ Research

✦ Education
✦ I.e., do not let graphics students start by using OpenCV

✦ Propagation
✦ Elegant ideas should have simple code
✦ which can be implemented easily

✦ Deployment

Borrow some efforts
from the industry

(to benefit the academia)

Reproducibility

๏ Good research should be easily reproducible
๏ Hard-to-reproduce projects intrinsically set barriers for people to follow up
๏ … and hinder further developments
๏ … even within a group

๏ Ease of implementation greatly helps reproducibility
๏ The core idea should be easily reproduced
๏ Maybe no need for performance

#include <taichi.h>

✦ 88-line implementations
๏ E.g. MLS-MPM

✦ Perfectly portable (with GUI!)
๏ Two files are enough for a self-contained demo
๏ No need for Makefiles, CMakeLists.txt
๏ g++ mpm.cpp -std=c++14 -lX11 -lpthread -O2 -o mpm
๏ Portability ensured by taichi.h

✦ Not parallelized, but already much faster than Python/
matlab

The key stuff

TensorFlow/
PyTorch/MXNet/…

The key stuff The key stuffThe key stuff

The Computer Vision/Deep Learning World

Case study:
MLS-MPM-CPIC Development

✦ “Team Scalability”

Taichi

The key stuff (C++)

Simulation A Simulation B Simulation C

Project II

Project III

What are included as the infrastructure?

✦ Logging & Fomatting
๏ Essential for long-running tasks
๏ No more std::cout or std::printf

✦ (De)serialization

✦ Profiling

✦ Better debugging and testing
๏ Automatic stack back-trace
๏ Email you when the program crashes

✦ File IO support (ply, jpg, png,
bmp, ttf etc.)

✦ High-performance small-size
linear algebra

✦ Scripting

✦ Portable GUI

✦ Plugin system

✦ …

The Mission of Taichi
1. Provide an accessible, portable, extensible, and

high-performance infrastructure, that is reusable
and tailored for researchers in computer graphics-
related fields;

2. Lower the barrier for computer graphics beginners
by providing an easy-to-use code-base that
includes demonstrative implementations of state-
of-the-art research projects;

3. Help improve reproducibility of computer
graphics research by simplifying and promoting
open-sourcing.

 >> import tensorflow as tf
>> import taichi as tc

Questions are welcome!

The End

