

Stitch Meshing

<u>Kui Wu¹, Xifeng Gao², Zachary Ferguson², Daniele Panozzo², Cem Yuksel¹</u>

¹ University of Utah ² New York University

Stitch Meshing

Convert arbitrary 3D shapes into knit models fully automatically

Knitting has a long history

Sock in Ancient Egypt 200 - 400 From: the British Museum

Madonna Knitting by Bertram of Minden 1400 - 1410

Life magazine's cover story November 24, 1941

Common Products

Fashion Element

Paris Fashion Week, Fall/Winter 2016/17

New Manufacture Materials

Nike Flyknit

More Applications in Future

• Knitted carbon fiber electrodes

[Jost et al. 2013]

• Wearable thermal energy harvesting

Knitted structure allows some stretches

[Kaldor et al. 2008]

Knit Structure

Yarn Loop

[Abel et al. 2013]

Knit Structure

But not too much

But not too much

Prior Work

• Replicating the process of knitting machines

[Duhovic and Bhattacharyya 2006]

Stitch Meshes [Yuksel et al. 2012]

Stitch Meshing

Yarn Loops & Stitches [Yuksel et al. 2012]

Yarn Loops & Stitches [Yuksel et al. 2012]

Yarn Loop

Stitch Mesh Face [Yuksel et al. 2012]

Stitch Mesh Face

Stitch Mesh Face [Yuksel et al. 2012]

Stitch Mesh Face

The Stitch Mesh Face [Yuksel et al. 2012]

Stitch Mesh Face

Stitch Meshes

Stitch Mesh Face

Stitch Meshes

Stitch Mesh Face

Stitch Meshes

Stitch Mesh Face

The Stitch Mesh Face [Yuksel et al. 2012]

Stitch Type Library [Yuksel et al. 2012]

Stitch Type Library [Yuksel et al. 2012]

Stitch Mesh [Yuksel et al. 2012]

Stitch Mesh Generation [Yuksel et al. 2012]

Example Pattern [Yuksel et al. 2012]

Stitch Mesh

Final Result

Photo Reference

Labeling the Input Mesh [Yuksel et al. 2012]

Stitch Meshes

Stitch Meshes

[Yuksel et al. 2012]

Problem

How to convert arbitrary mesh to stitch mesh for yarn-level modeling?

Our Method

We introduce the first fully automatic pipeline to convert arbitrary 3D shapes into knit models.

Remeshing

We extend the robust quad-dominant meshing pipeline [Gao et al. 2017] to produce meshes

- Robust
- All face are similar size
- All angles are close to 90 degree

Robust Hex-Dominant Mesh Generation using Field-Guided Polyhedral Agglomeration Xifeng Gao, Wenzel Jakob, Marco Tarini, Daniele Panozzo ACM Transactions on Graphics (SIGGRAPH, 2017)

Remeshing

We extend the robust quad-dominant meshing pipeline [Gao et al. 2017] to produce meshes

- Robust
- All face are similar size
- All angles are close to 90 degree
 Use 2-RoSy (two-fold rotational symmetry) field
 Cut each polygon with more than 5 sides by adding the edge that is most aligned with the orientation field

We use half-edge data structure for labeling

- 1. Preprocess
 - Triangulation near singularities
- 2. Minimize conflicting by solving Mixed-integer Programming (MIP) problem
- 3. Postprocess
 - solving conflicts
 - merging triangles

Conflicting is unavoidable

Three valid half-edge configurations

Three valid half-edge configurations

1 - course edge0 - wale edge

Mixed-integer Programming problem

minimize

$$\sum_{i=0}^{n-1} (\ell_0^{e_i} - \ell_1^{e_i})^2$$
$$\ell_0^{e_i}, \ell_1^{e_i} \in \{0, 1\}$$

Mixed-integer Programming problem

minimize $\sum_{i=0}^{n-1} (\ell_0^{e_i} - \ell_1^{e_i})^2$
subject to

for each quad face f_j , $\ell_0^{f_j} = \ell_2^{f_j}$, $\ell_1^{f_j} = \ell_3^{f_j}$, $\ell_0^{f_j} \neq \ell_1^{f_j}$ $\ell_k^{f_j} \in \{0, 1\}$, k = 0, 1, 2, 3

Mixed-integer Programming problem

minimize $\sum_{i=1}^{n-1} (\ell_0^{e_i} - \ell_1^{e_i})^2$ subject to for each quad face f_j , $\ell_0^{f_j} = \ell_2^{f_j}$, $\ell_1^{f_j} = \ell_3^{f_j}$, $\ell_0^{f_j} \neq \ell_1^{f_j}$ $\ell_k^{fj} \in \{0, 1\}, \quad k = 0, 1, 2, 3$ for each triangle face f_j , $\mathbf{1} \leq \ell_0^{f_j} + \ell_1^{f_j} + \ell_2^{f_j} \leq \mathbf{2}$ $\ell_k^{f_j} \in \{0, 1\}, \quad k = 0, 1, 2$

Postprocess – face splitting

Postprocess – edge rotation

Any type of quads can be represented by two triangles

Postprocess – triangles merging

Topology

• No conflicting

Geometry

- All faces have approximately the same size
- All angles are close to 90 degree

Knitting direction mismatch

1. group faces by wale edges to form rows

- 2. build a meta-graph
- 3. minimizes the number of course edges with mismatched wale directions

Grouped Stitch Mesh

- 1. group faces by wale edges to form rows
- 2. build a meta-graph
- 3. minimizes the number of course edges with mismatched wale directions

Grouped Stitch Mesh

Meta-graph

(d) Mesh with Knitting Directions

(e) Stitch Mesh
Stitch Mesh Generation

Subdivide mesh to stitch mesh

Stitch Mesh Generation

Subdivide mesh to stitch mesh

Stitch Mesh Generation

Subdivide mesh to stitch mesh

(f) Final Yarn-Level Model

(e) Stitch Mesh

Yarn Generation

Replace stitch mesh face with corresponding yarn loop topology

Default orientation field

Custom orientation field

Default orientation field

Custom orientation field

Custom orientation field

		# Input	# Mesh	# Stitch	Remesh	Labeling	K. Direction	Stitch Mesh	Mesh-based	Yarn	Yarn-level
		Faces	Faces	Faces			Assignment	Gen.	Relaxation	Gen.	Relaxation
Rocker Arm	(Fig.19a)	62K	2,018	7,880	2 s	8 s	99 ms	593 ms	12 s	18 ms	2 hr
Rocker Arm	(Fig.19b)	62K	2,037	7,790	2 s	4 s	127 ms	583 ms	9 s	22 ms	2 hr
Chinese Lion	(Fig.1)	100K	3,495	13,606	4 s	19 s	198 ms	1,049 ms	18 s	39 ms	2 hr*
Kitten	(Fig.1)	100K	3,690	14,460	4 s	16 s	124 ms	1,083 ms	16 s	37 ms	3 hr
Dragon	(Fig.1)	104K	4,218	16,458	4 s	26 s	370 ms	1,234 ms	53 s	35 ms	4 hr*
Horse	(Fig.20a)	134K	4,640	18,172	6 s	17 s	159 ms	1,297 ms	25 s	55 ms	2 hr
Horse	(Fig.20b)	134K	4,655	18,160	6 s	18 s	306 ms	1,311 ms	45 s	52 ms	2 hr
Elephant	(Fig.1)	299K	4,791	18,686	13 s	26 s	237 ms	1,421 ms	28 s	51 ms	2 hr
Fertility	(Fig.3)	167K	4,979	19,490	8 s	32 s	192 ms	1,495 ms	46 s	54 ms	1 hr*
Armadillo	(Fig.17)	280K	6,591	25,734	13 s	58 s	567 ms	1,963 ms	88 s	77 ms	2 hr*
Bunny (1.3K)	(Fig.16)	111K	353	1392	4 s	2 s	45 ms	119 ms	6 s	4 ms	<1 hr
Bunny (4K)	(Fig.16)	111K	1059	4124	4 s	2 s	66 ms	315 ms	8 s	12 ms	<1 hr
Bunny (7K)	(Fig.16)	111K	1,821	7,090	4 s	2 s	131 ms	550 ms	10 s	19 ms	1 hr*
Bunny (16K)	(Fig.16)	111K	4,003	15,704	5 s	16 s	147 ms	1101 ms	12 s	45 ms	2 hr
Bunny (48K)	(Fig.16)	406K	12,195	48,096	37 s	84 s	399 ms	3526 ms	130 s	159 ms	3 hr*

Table 1. The computation performance measurements for the steps of our pipeline.

The computation times are generated using a computer with Intel Core i7 6700HQ CPU @ 2.60 GHz with 16 GB RAM.

* Yarn-level relaxation timings are generated using a computer with Intel Core i7 3930K CPU @ 3.20 GHz with 32 GB RAM.

Customized 3D Print Glove

3D Print Octopus Sweater

Tests with 106 models

Conclusion

We introduce the first **fully automatic** pipeline to convert arbitrary 3D shapes into knit models.

Future Work

Convert knitted structure to knittable structure

Hand Knitting

Machine Knitting

Thanks!

Website: http://www.cs.utah.edu/~kwu Email: kwu@cs.utah.edu

