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RESEARCH GOAL(1)

 Building interactive character controllers.

» Synthesizing realistic and smooth character motions in real-time.

Control System

Example of character control
[Holden et al '17]



RESEARCH GOAL(2)

« Learn from a large data set:

— Wide range of motions. Jé
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— Small memory.
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RELATED WORKS(1)
DATA-DRIVEN CHARACTER CONTROLLERS

 Classic techniques: walk run
— Motion Graph [Kovar et al. 2002] [Lee et al. 2002] etc.

transitions

_

Structure of Motion Graph
— Repeat motion clips, e.g. repeat walking cycle/ running cycle.

— Interpolate to get the transitions, e.g. interpolate between walking and running to get transitions.



RELATED WORKS(1)
DATA-DRIVEN CHARACTER CONTROLLERS

» Classic techniques: @

— Motion Field [Lee et al. 2010] O

: . next state? "z value: ce0 0 @ value: 3% £ %
— Motion Matching [Clavet 2016] * ¢ O

Structure of Motion Field

— Search for K-Nearest poses for current pose from database.
— Choose/blend from K-NN poses to get the next pose which satisfies user command best.

— Using tricky structure for better searching, e.g. K-D trees.



RELATED WORKS(1)
DATA-DRIVEN CHARACTER CONTROLLERS

 Classic techniques:
— Motion Graph [Kovar et al. 2002] [Lee et al. 2002] etc.
— Motion Field [Lee et al. 2010]
— Motion Matching [Clavet 2016]

* |ssues:
— Require storing full motion database.
— Require manual processing by artist, i.e. segmentation, labeling, mapping.

— Require tricky structures (e.g.K-D trees)



RELATED WORKS(2)
DATA-DRIVEN CHARACTER CONTROLLERS

« Can Neural Networks Help?

— Function Approximator (f)

» Advantage

— Learn from large dataset.

— Fast runtime / Low memory usage.

Example of Feed-Forward Neural Network



RELATED WORKS(2)
DATA-DRIVEN CHARACTER CONTROLLERS

e Convolutional Neural Networks [Holden et al. 2016]

— Learning a mapping from a user control signal to a motion.
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RELATED WORKS(2)
DATA-DRIVEN CHARACTER CONTROLLERS

e Convolutional Neural Networks [Holden et al. 2016] e
2{
* Issues

— Ambiguous mapping between input and output.

Ambiguitydinf@utput

Issues of Floating caused by ambiguity

— Whole input trajectory must be given beforehand.

— Muti-layer CNNs are still too slow.

Same input trajectory can be mapped to different output 9



RELATED WORKS(2)
DATA-DRIVEN CHARACTER CONTROLLERS

 Recurrent Neural Networks [Fragkiadaki et al. 2015]

— Mapping from the previous frame(s) to next frame.




RELATED WORKS(2)
DATA-DRIVEN CHARACTER CONTROLLERS

* Recurrent Neural Networks [Fragkiadaki et al. 2015]

* |ssues
— Converge to average pose after ~10 seconds.
— Difficult to avoid "floating”.

— Still has issues of ambiguity.

RecunrentESTHIMI(ERD)INetworkN[Eloating]

Issues of ‘floating’ still occurs in RNN model »



RELATED WORKS(2)
DATA-DRIVEN CHARACTER CONTROLLERS

* Phase-functioned Neural Network [Holden et al. 2016]

— Phase is introduced to segment the motion cycle.

4 control pomts
@ éé@g % -4 neural networks
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RELATED WORKS(2)
DATA-DRIVEN CHARACTER CONTROLLERS

* Phase-functioned Neural Network [Holden et al. 2016]

— Phase is introduced to segment the motion.

-4 control points

-4 neural networks

[

-current network weights

RECOIL  PASSING  HIGH- RECOL  PASSING HIGH-PONT  CONTACT -linear blended by adjacent

‘ control points
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RELATED WORKS(2)
DATA-DRIVEN CHARACTER CONTROLLERS

* Phase-functioned Neural Network [Holden et al. 2016]

Neural Network

Frame 1

Phase Function

Model structure of PFNN
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RELATED WORKS(2)
DATA-DRIVEN CHARACTER CONTROLLERS

* Phase-functioned Neural Network [Holden et al. 2016]

« Advantage of Phase
— The pose of character is less ambiguous.

— The space of poses is smaller and more convex.

No floating issue in PFNN
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RELATED WORKS(2)
DATA-DRIVEN CHARACTER CONTROLLERS

* Negative of PFNN

- Require phase labels. Quadruped Locomotion Patterns
— Cannot handle non-cyclic motions well.

walk pace trot canter

» Problems for quadruped motion capture data
— Multi-modes and several actions. M M ‘\K W

— Dataare unstructured. =000 I RS SeEe Boe > G R M e B = =

— Non-cyclic motion, e.g. sitting, lying

Courtesy of Stephen Cunnane

Quadruped motion capture data
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MODE-ADAPTIVE NEURAL NETWORK

OUTLINE

 Model Structure.

 Parameterization.

 Training.

Frame i-1

Joint Positions

Joint Rotations

Joint Velocities
Trajectory Positions
Trajectory Directions
Trajectory Velocities

Target Velocities
Action Variables

Motion Features
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Character State and Control Variables

Motion Update

Frame 1

Joint Positions
Joint Rotations
Joint Velocities
Trajectory Positions
Trajectory Directions
Trajectory Velocities
Root Motion
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MODE-ADAPTIVE NEURAL NETWORK
MODEL STRUCTURE

Frame i-1

Joint Positions
Joint Rotations
Joint Velocities
Trajectory Positions
Trajectory Directions
Trajectory Velocities
Target Velocities
Action Variables

Motion Features
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Gating Network
Feed-Forward Network
2 hidden layers

32 hidden units per layer
elu, soft-max activation

Motion Prediction Network

Feed-Forward Network

2 hidden layers

512 hidden units per layer
elu activation

Frame 1

Joint Positions
Joint Rotations
Joint Velocities
Trajectory Positions
Trajectory Directions
Trajectory Velocities
Root Motion



MODE-ADAPTIVE NEURAL NETWORK
MODEL STRUCTURE

Frame i-1

Joint Positions
Joint Rotations
Joint Velocities
Trajectory Positions
Trajectory Directions
Trajectory Velocities
Target Velocities
Action Variables
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Blending Coefficients
Motion Weights

r State and Control Variables

Motion Update

Experts Blending: & = Z{il Wiaj

Frame 1

Joint Positions
Joint Rotations
Joint Velocities
Trajectory Positions
Trajectory Directions
Trajectory Velocities
Root Motion
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MODE-ADAPTIVE NEURAL NETWORK
PARAMETERIZATION

Frame 1-1

. Expert
Gating Network ;7 ohts

O e

Motion Prediction Motion Update Frame i
Network

Motion Features

Joint Positions
Joint Rotations
Joint Velocities
Trajectory Positions
Trajectory Directions
Trajectory Velocities
Root Motion
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¢
D
¥

Joint Positions

Joint Rotations
Joint Velocities
Trajectory Positions
Trajectory Directions

Character State and Control Variables

Trajectory Velocities Input of System/Motion Prediction Network:
Target Velocities _ _
Action Variables * Motion at previous frame.

« Trajectory at previous frame.




MODE-ADAPTIVE NEURAL NETWORK

PARAMETERIZATION
Gait velocity distribution
Frame i-1 Motion type | time (sec) | frames | ratio (%) mmm Canter
idle 143370 | 86022 3138 —
move 2190.62 | 131437 47.95 ——
jump 35.50 2130 0.78
sit 528.70 31722 11.57
lie 307.63 18458 6.73
stand 72.07 4324 1.58 _
0.0 0.5 1.0 Vl.eSIOCitZ).IOin r;/f)s 3.0 3.5 4.0
Joint Positions
Joint Rotations .
Joint Velocities Action Control:
Trajectory Positi . . .
T,L‘}Liﬁ:,;g Di?:;%n:s « 6 action signals which is labeled by one-hot vector.

Trajectory Velocities « Target velocities control transitions between different gaits.
Target Velocities
Action Variables
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MODE-ADAPTIVE NEURAL NETWORK
PARAMETERIZATION

Frame 1-1

. Expert
Gating Network ;7 ohts

@

Motion Prediction Motion Update Frame i
Network

Motion Features

Joint Positions
Joint Rotations
Joint Velocities
Trajectory Positions
Trajectory Directions
Trajectory Velocities
Root Motion

Blending Coefficients
Qe—

Joint Positions

Joint Rotations
Joint Velocities
Trajectory Positions
Trajectory Directions

Character State and Control Variables

Trajectory Velocities Input of Gating Network(Motion Features):
Target Velocities ) L )
Action Variables » Feet Joint Velocities at previous frame.

» Target Velocities at previous frame.
» Action Variables at previous frame.



MODE-ADAPTIVE NEURAL NETWORK
PARAMETERIZATION

Frame i-1

Joint Positions
Joint Rotations
Joint Velocities
Trajectory Positions
Trajectory Directions
Trajectory Velocities
Target Velocities
Action Variables

Output of System/Motion Prediction Network

Motion Features

. Expert
Gating Network ;7 ohts
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Motion Prediction

Network Motion | pdate

A AL
Blending Coefficients

Character State and Control Variables

Motion at current frame

Frame 1

Joint Positions
Joint Rotations
Joint Velocities
Trajectory Positions
Trajectory Directions
Trajectory Velocities
Root Motion

Predicted Trajectory at current frame
— for smooth transitions
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MODE-ADAPTIVE NEURAL NETWORK
TRANING

e Cost function:

— Mean square error between the predicted error and the ground truth:
Cost(X,Y; B.11) = [IY - O(X, Q(X; p): B)II.
» Optimizer:
— Stochastic gradient descent, AdamWR [Loshchilov and Hutter 2017]
* Training Time
— 20/30 hours with 4/8 experts, respectively, using NVIDIA GeForce GTX 970 GPU
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MODE-ADAPTIVE NEURAL NETWORK
RESULT

e Compare with Standard NN and PFNN

— Same number of layers and units.




MODE-ADAPTIVE NEURAL NETWORK
RESULT

« What do the different experts learn?
— Different modes corresponds to different combination of experts.

— Some experts have learned features which are specifically responsible for certain motions/actions.
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MODE-ADAPTIVE NEURAL NETWORK
DISCUSSION

» Positive
— No phase label needed
— Can produce various high-quality locomotion modes

— Can produce non-cyclic motions

» Negative
— Training time
— Artistic control

» Difficult to edit the outcome
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MODE-ADAPTIVE NEURAL NETWORK
SUMMARY

* A novel time-series architecture to learn from a large unstructured quadruped motion capture
dataset

« Allow the user to interactively control the velocity, direction and actions.

« End-to-end training without providing phase and gait labeling

* Project - https://github.com/ShikamaruZhang/Al4Animation
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