Mode-Adaptive Neural Networks for Quadruped Motion Control

He Zhang he.zhang@ed.ac.uk CGVU Group, Informatics School, University of Edinburgh

OUTLINE

- Research Background.
- Related Works.
- Mode-Adaptive Neural Networks.
- Discussion and Summary.

RESEARCH GOAL(1)

- Building interactive character controllers.
- Synthesizing realistic and smooth character motions in real-time.

Control System

[Holden et al '17]

RESEARCH GOAL(2)

- Learn from a large data set:
 - Wide range of motions.
 - Small memory.
 - Fast in execution time.

- Classic techniques:
 - Motion Graph [Kovar et al. 2002] [Lee et al. 2002] etc.
 - Motion Field [Lee et al. 2010]
 - Motion Matching [Clavet 2016]

- Repeat motion clips, e.g. repeat walking cycle/ running cycle.
- Interpolate to get the transitions, e.g. interpolate between walking and running to get transitions.

- Classic techniques:
 - Motion Graph [Kovar et al. 2002] [Lee et al. 2002] etc.
 - Motion Field [Lee et al. 2010]
 - Motion Matching [Clavet 2016]

- Search for K-Nearest poses for current pose from database.
- Choose/blend from K-NN poses to get the next pose which satisfies user command best.
- Using tricky structure for better searching, e.g. K-D trees.

• Classic techniques:

- Motion Graph [Kovar et al. 2002] [Lee et al. 2002] etc.
- Motion Field [Lee et al. 2010]
- Motion Matching [Clavet 2016]
- Issues:
 - Require storing full motion database.
 - Require manual processing by artist, i.e. segmentation, labeling, mapping.
 - Require tricky structures (e.g.K-D trees)

- Can Neural Networks Help?
 - Function Approximator (f)

- Advantage
 - Learn from large dataset.
 - Fast runtime / Low memory usage.

Example of Feed-Forward Neural Network

- Convolutional Neural Networks [Holden et al. 2016]
 - Learning a mapping from a user control signal to a motion.

• Convolutional Neural Networks [Holden et al. 2016]

- Issues
 - Ambiguous mapping between input and output.
 - Whole input trajectory must be given beforehand.
 - Muti-layer CNNs are still too slow.

Same input trajectory can be mapped to different output

- Recurrent Neural Networks [Fragkiadaki et al. 2015]
 - Mapping from the previous frame(s) to next frame.

• Recurrent Neural Networks [Fragkiadaki et al. 2015]

- Issues
 - Converge to average pose after ~10 seconds.
 - Difficult to avoid "floating".
 - Still has issues of ambiguity.

Issues of 'floating' still occurs in RNN model

- Phase-functioned Neural Network [Holden et al. 2016]
 - Phase is introduced to segment the motion cycle.

-4 control points-4 neural networks

- Phase-functioned Neural Network [Holden et al. 2016]
 - Phase is introduced to segment the motion.

• Phase-functioned Neural Network [Holden et al. 2016]

Model structure of PFNN

- Phase-functioned Neural Network [Holden et al. 2016]
- Advantage of Phase
 - The pose of character is less ambiguous.
 - The space of poses is smaller and more convex.

No floating issue in PFNN

- Negative of PFNN
 - Require phase labels.
 - Cannot handle non-cyclic motions well.
- Problems for quadruped motion capture data
 - Multi-modes and several actions.
 - Data are unstructured.
 - Non-cyclic motion, e.g. sitting, lying

Quadruped Locomotion Patterns

Quadruped motion capture data

MODE-ADAPTIVE NEURAL NETWORK OUTLINE

- Model Structure.
- Parameterization.

MODE-ADAPTIVE NEURAL NETWORK MODEL STRUCTURE

MODE-ADAPTIVE NEURAL NETWORK MODEL STRUCTURE

• Trajectory at previous frame.

Frame i-1

Motion type	time (sec)	frames	ratio (%)
idle	1433.70	86022	31.38
move	2190.62	131437	47.95
jump	35.50	2130	0.78
sit	528.70	31722	11.57
lie	307.63	18458	6.73
stand	72.07	4324	1.58

Joint Positions Joint Rotations Joint Velocities Trajectory Positions Trajectory Directions Trajectory Velocities Target Velocities Action Variables

Action Control:

- 6 action signals which is labeled by one-hot vector.
- Target velocities control transitions between different gaits.

Trajectory Velocities Target Velocities

Action Variables

Input of Gating Network(Motion Features):

- Feet Joint Velocities at previous frame.
- Target Velocities at previous frame.
- Action Variables at previous frame.

- Motion at current frame
- Predicted Trajectory at current frame
 - for smooth transitions

Root Motion

MODE-ADAPTIVE NEURAL NETWORK TRANING

- Cost function:
 - Mean square error between the predicted error and the ground truth:

 $Cost(\mathbf{X}, \mathbf{Y}; \boldsymbol{\beta}, \boldsymbol{\mu}) = \|\mathbf{Y} - \Theta(\mathbf{X}, \Omega(\hat{\mathbf{X}}; \boldsymbol{\mu}); \boldsymbol{\beta})\|,$

- Optimizer:
 - Stochastic gradient descent, AdamWR [Loshchilov and Hutter 2017]
- Training Time
 - 20/30 hours with 4/8 experts, respectively, using NVIDIA GeForce GTX 970 GPU

MODE-ADAPTIVE NEURAL NETWORK RESULT

- Compare with Standard NN and PFNN
 - Same number of layers and units.

MODE-ADAPTIVE NEURAL NETWORK RESULT

- What do the different experts learn?
 - Different modes corresponds to different combination of experts.
 - Some experts have learned features which are specifically responsible for certain motions/actions.

MODE-ADAPTIVE NEURAL NETWORK DISCUSSION

• Positive

- No phase label needed
- Can produce various high-quality locomotion modes
- Can produce non-cyclic motions
- Negative
 - Training time
 - Artistic control
 - Difficult to edit the outcome

MODE-ADAPTIVE NEURAL NETWORK SUMMARY

- A novel time-series architecture to learn from a large unstructured quadruped motion capture dataset
- Allow the user to interactively control the velocity, direction and actions.
- End-to-end training without providing phase and gait labeling
- Project https://github.com/ShikamaruZhang/AI4Animation

Q & A