

Space-time Tomography for Continuously Deforming Objects

<u>Guangming Zang</u>, Ramzi Idoughi, Ran Tao, Gilles Lubineau, Peter Wonka, Wolfgang Heidrich, King Abdullah University of Science And Technology

Tomography in graphics

Gas Flows capture [Atcheson et al. 2008]

[Gregson et al. 2012]

Velocity reconstruction [Gregson et al. 2014]

Transparent reconstruction [Trifonov et al. 2006]

Multi-layer 3D display [Wetzstein et al. 2011]

Flower modeling [ljiri et al. 2014]

Motivation

Unknowns: ~ 500³ voxels **Equations:** 2M pixels × Number of projections

Large number of projections + priors

Motivation

Time for one projection: ~ 5 s

Is it possible to scan continuously deforming objects ?

Classical reconstruction using 5520 projections (duration: 9h32m)

Before scan

After scan

Wilting rose

Related work

Discrete deformations / Key framing

Growing plant animation

[Kato et al. 2017]

Digital Volume Correlation to retrieve the deformation field

[Hild et al. 2014]

Related work

Electrocardiography (ECG)

Related work

General deformations (parametric approach)

Use of basis-functions approach (e.g. finite element framework)

The volume is advected from a reference, using an estimated displacement.

جامعة الملك عبداللم للعلوم والتقنية King Abdullah University of Science and Technology

Objective

Space-time tomography reconstruction

After scan

Wilting rose

Assumption: relatively slow deformations (less than 6 voxels/minute)

Frame 01

Frame 02

Frame 46

Frame 91

Frame 92

Frame 91

Frame 92

- Data acquisition
- 4D tomographic reconstruction
- Results

Classical acquisition strategy

Classical acquisition strategy

Low-discrepancy acquisition strategy

(Van der Corupt sequence)

Low-discrepancy acquisition strategy

(Van der Corupt sequence)

- Data acquisition
- 4D tomographic reconstruction
- Results

X-ray path: Ω_i

X-ray path: Ω_i Unknown field: f(x)

X-ray path: Ω_i Unknown field: f(x)Measurement: p_i

$$\int_{\Omega_i} f(x) \, \mathrm{d}\Omega_i = \underbrace{-\log(I_i/I_0)}_{p_i}$$

X-ray path: Ω_i Unknown field: f(x)Measurement: p_i

$$\sum_{j} f_j A_{ij} = p_i$$

X-ray path: Ω_i Unknown field: f(x)Measurement: p_i

$$\sum_{j} f_j A_{ij} = p_i$$

$$A_t f_t = p_t$$

Negligible deformation in sequential projections!

Linear system

Linear system

Non-parametric and matrix-free

Memory consuming

• Alternating, multi-scale optimization

III-posed problem

• Flexibility: priors incorporating and implementation

Radon Transform

Priors

Tomography $\|\mathbf{A}_t \mathbf{f}_t - \mathbf{p}_t\|_2^2$

Tomography $\|\mathbf{A}_t \mathbf{f}_t - \mathbf{p}_t\|_2^2$

Spatial smoothness

$$\|\nabla_S \mathbf{f}_t\|_{\mathbf{H}_{\epsilon}}$$

Priors

Spatial smoothness $\|
abla_S \mathbf{f}_t\|_{\mathbf{H}_{\epsilon}}$

Temporal smoothness $\| \nabla_T \mathbf{f}_t \|_2^2$

Priors

Tomography $\|\mathbf{A}_t \mathbf{f}_t - \mathbf{p}_t\|_2^2$

Spatial smoothness

 $\|\nabla_S \mathbf{f}_t\|_{\mathbf{H}_{\epsilon}}$

Temporal smoothness $\| \nabla_T \mathbf{f}_t \|_2^2$

Flow correction $\|\nabla_T \mathbf{f}_t + \nabla_S \mathbf{f}_t \cdot \mathbf{u}_t\|_1$ $\sum_{i=x,y,z} \|\nabla_S \mathbf{u}_{t,i}\|_{\mathbf{H}_{\tau}}$

Tomography $\|\mathbf{A}_{t}\mathbf{f}_{t} - \mathbf{p}_{t}\|_{2}^{2}$ Spatial smoothness Temporal smoothness $\|\nabla_S \mathbf{f}_t\|_{\mathbf{H}_{\epsilon}}$ $\|\nabla_T \mathbf{f}_t\|_2^2$

Flow correction $\|\nabla_T \mathbf{f}_t + \nabla_S \mathbf{f}_t \cdot \mathbf{u}_t\|_1$ $\left\| \nabla_{S} \mathbf{u}_{t,i} \right\|_{\mathbf{H}_{\tau}}$ i=x, y, z

Converged ?

Converged ?

Input

Overview

- Data acquisition
- 4D tomographic reconstruction
- Results

Wilting rose

Photo

Before

Projection

After

Wilting rose

Baseline method

Ours

Ours

Wilting rose

Baseline method

Wilting rose

Baseline method

Ours

High viscosity fluid flow

Before

After

High viscosity fluid flow

Mushroom re-hydration

Mushroom re-hydration

Baseline method

Ours

Mushroom re-hydration

Rising dough

Before After

Rising dough

Baseline method

Ours

Rising dough

Baseline method

Ours

Lentil/lupin seeds hydration

Before

After

Lentil/lupin seeds hydration

Lentil/lupin seeds hydration

Baseline method

Ours

Crystal sugar dissolution

Before

After

Crystal sugar dissolution

Baseline method

Ours

58

Summary

• A new sampling strategy

A new 4D framework for tomography

• Well suited to graphics

360

270

180

Next steps

- Extension to faster deformation
- Extension to other imaging modalities (e.g. electron microscope)
- Re-Simulation (e.g. domain modification)

Thank you !

Code & Data

Sponsorship: KAUST as part of VCC Center Competitive Funding.