

VOXEL CORES: EFFICIENT, ROBUST, AND PROVABLY GOOD APPROXIMATION OF 3D MEDIAL AXES

Yajie Yan, Washington University in St. Louis David Letscher, St. Louis University Tao Ju, Washington University in St. Louis

• All points inside the shape that have two or more nearest neighbors on the shape's boundary [Blum 1967]

MEDIAL AXIS: PROPERTIES

- Centered
- Compact
- Preserving topology
- Reconstructing shape

3D MEDIAL AXIS: APPLICATIONS

[Tam & Hendrich 03]

Computing skeletons [Dey & Sun 06] Structural analysis [Lindquist et al. 99]

COMPUTING 3D MEDIAL AXES

- Exact algorithms [Milenkovic 93; Sherbrooke et al. 96; Culver et al. 04]
 - Limited to simple polyhedra

[Culver et al. 04]

COMPUTING 3D MEDIAL AXES

- Voxel-based approximation [Palágyi & Kuba 99, Siddiqi et al. 02, Jalba et al. 16, etc.]
 - Poor scalability with grid resolution
 - No bound on approximation error

COMPUTING 3D MEDIAL AXES

- Sampling-based approximation [Amenta et al. 01, Dey & Zhao 04, Giesen et al. 06, etc.]
 - More scalable
 - Bounded approximation error
 - But, often produces topological errors
 - Lacking topological guarantee
 - Numerical fragile

TOPOLOG	ICAL ERRORS			Washington University in St.Louis School of Engineering & Applied Science
	Input shape	[Dey & Zhao 04]	[Amenta et al. 01]	[Amenta & Kolluri 01] (with topo. guarantee)
Connected	1	235	23950	1
Euler number:	-3	78	213577	61

TOPOLOGICAL ERRORS

Input shape

Curve skeleton [Yan et al. 16]

9

TOPOLOGICAL ERRORS

Input shape

Curve skeleton [Yan et al. 16]

- A new sampling-based algorithm for approximating 3D medial axes
 - Scalable
 - Geometric and topological guarantees
 - Simple and numerically stable

THE IDEA

- Sample not on, but *near*, the boundary, in a regular pattern
 - Voxelize the shape (similar to voxel based methods)
 - Take a subset of the Voronoi diagram of the boundary vertices of voxelization (similar to sampling based methods)

• Given an input shape *O*

- Given an input shape *0*
- Voxelization V consists of voxels whose centers lie in O
 - "Gauss digitization"

• Voxel core *C*: faces of the Voronoi diagram of boundary vertices of *V* that lie inside *V*

- Voxel core *C*: faces of the Voronoi diagram of boundary vertices of *V* that lie inside *V*
 - Homotopy equivalent with V
 - Bounded Hausdorff distance to medial axis of V

- A shape and its voxelization can have very different medial axes
 - But a subset of the two medial axes are close [Chazal and Lieutier 05]

School of Engineering & Applied Science

• λ -medial axis of O: medial axis points whose feature size $\geq \lambda$ [Chazal and Lieutier 05]

School of Engineering & Applied Science

• λ -medial axis of O: medial axis points whose feature size $\geq \lambda$ [Chazal and Lieutier 05]

- λ -medial axis of O: medial axis points whose feature size $\geq \lambda$ [Chazal and Lieutier 05]
- λ -voxel core of *V*: set of all faces of *C* whose feature size $\geq \lambda$

- λ -medial axis of O: medial axis points whose feature size $\geq \lambda$ [Chazal and Lieutier 05]
- λ -voxel core of *V*: set of all faces of *C* whose feature size $\geq \lambda$

& APPLIED SCIENCE

- λ -medial axis of O: medial axis points whose feature size $\geq \lambda$ [Chazal and Lieutier 05]
- λ -voxel core of *V*: set of all faces of *C* whose feature size $\geq \lambda$

• Assuming O is smooth (C^2) and voxel size is sufficiently small

- Voxel edge length $\leq \frac{2\sqrt{3}}{3} \times$ minimum local feature size of 0

- Voxel core of *V* is homotopy equivalent to medial axis of *O*
- λ -voxel core of V converges onto λ -medial axis of O as voxel size goes to 0
 - for any choice of $\lambda > 0$

CONVERGENCE OF λ **-VOXEL CORE**

 λ: balances convergence rate and coverage of the medial axis

Ellipsoid and

medial axis

ALGORITHM

- 1. Voxelization
- 2. Extracting voxel core
 - Computing Voronoi diagram
 - Keeping interior part
- 3. Pruning by feature size given λ
 - Topology-preserving contraction from voxel core to λ -voxel core

Voxelization

Voxel core (color: feature size) Approximate medial axis

COMPARISONS

28

COMPARISONS

- Triangle meshes processed at resolution 1024³
 - Time < 3min, memory < 5GB

SEGMENTED 3D VOLUMES

SEGMENTED 3D VOLUMES

- A simple, theoretically sound and computation-friendly algorithm for computing 3D medial axes
- Limitations and future work:
 - Aliasing artifacts
 - Efficiency on very large volumes (e.g, adaptive grids)
 - Extension to higher dimensions

Exe + code: yajieyan.github.io/project/ma

