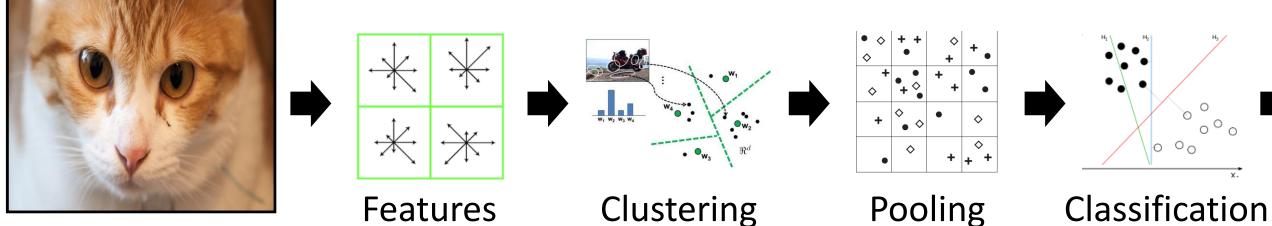


Learning to Generate Images

Jun-Yan Zhu

Ph.D. at UC Berkeley Postdoc at MIT CSAIL

Computer Vision before 2012

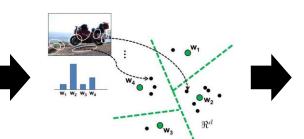


`at 0 0 0 ° 0 0 00

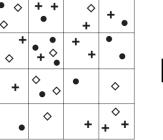
Computer Vision Now



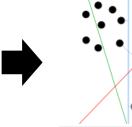
Features

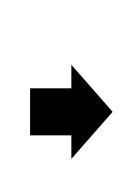


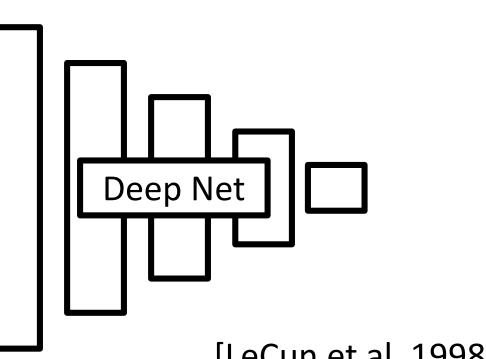
Clustering

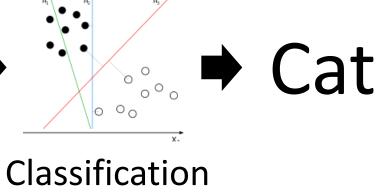


Pooling





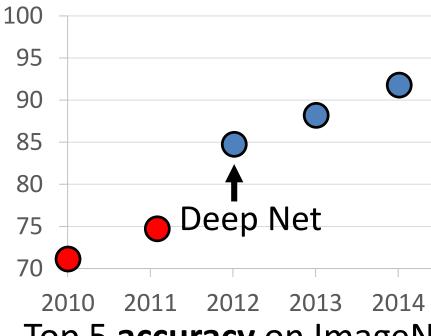




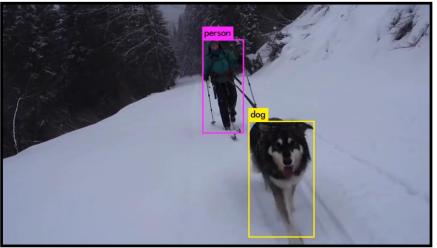
Cat

[LeCun et al, 1998], [Krizhevsky et al, 2012]

Deep Learning for Computer Vision

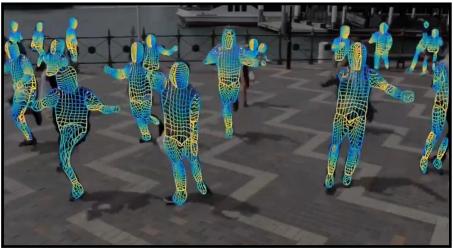


Object detection



Redmon et al., 2018]

Human understanding



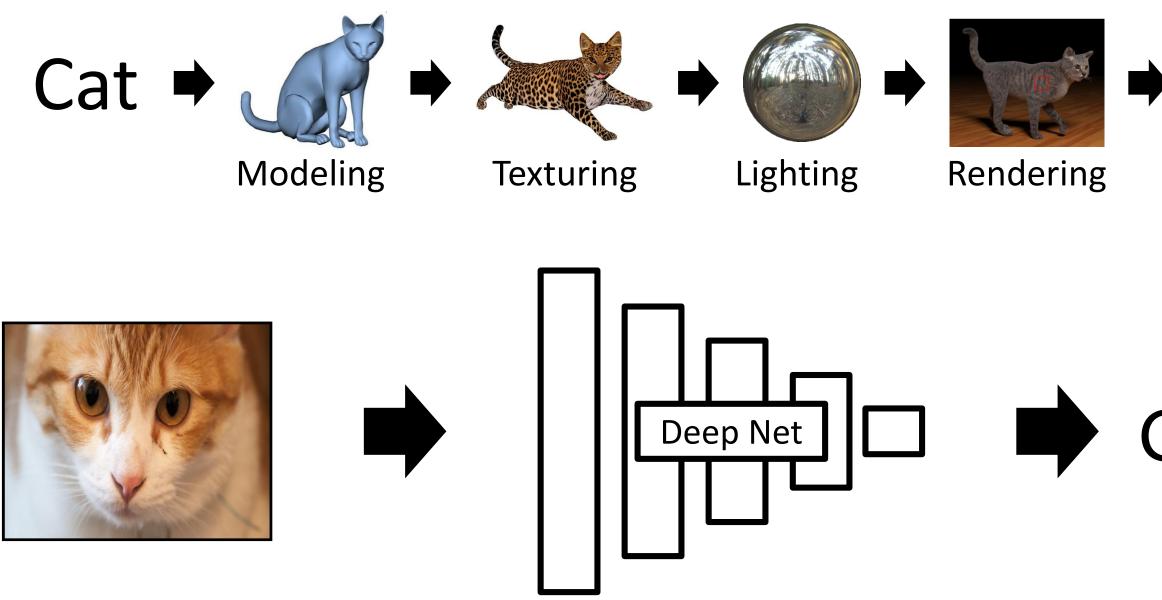
[Güler et al., 2018]

2015 2016 2017 Top 5 accuracy on ImageNet benchmark **Autonomous driving**

[Zhao et al., 2017]

Can Deep Learning Help Graphics?

Can Deep Learning Help Graphics?



Good/Bad

Selecting the most attractive expressions

Photos

[Zhu et al. SIGGRAPH Asia 2014]

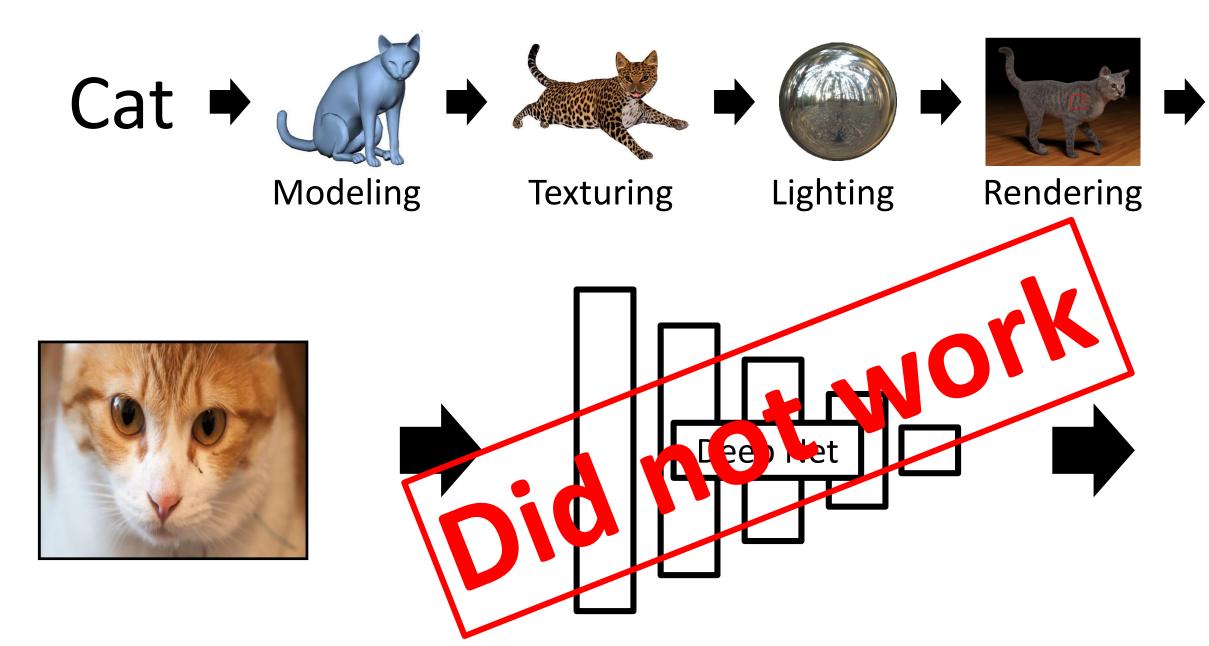
Selecting the most realistic composites

Most realistic composites

Least realistic composites

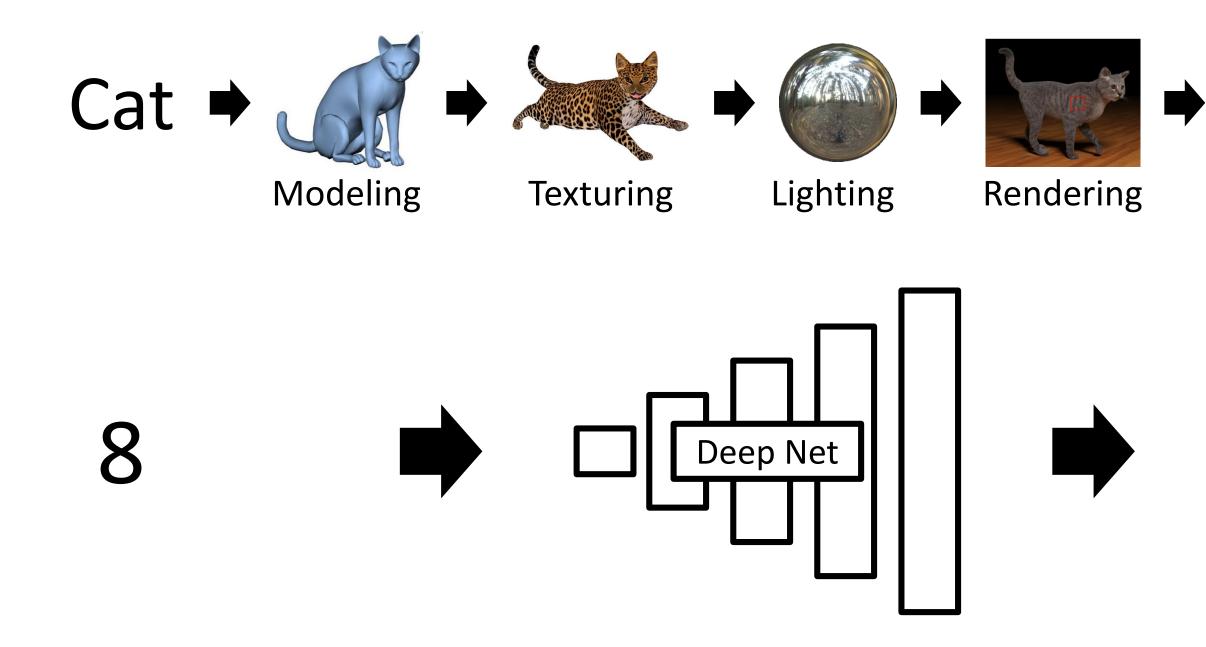
[Zhu et al. ICCV 2015]

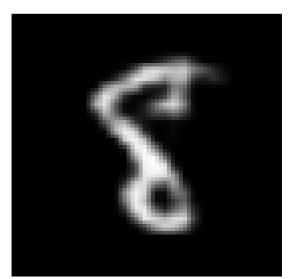
Can Deep Learning Help Graphics?



Cat

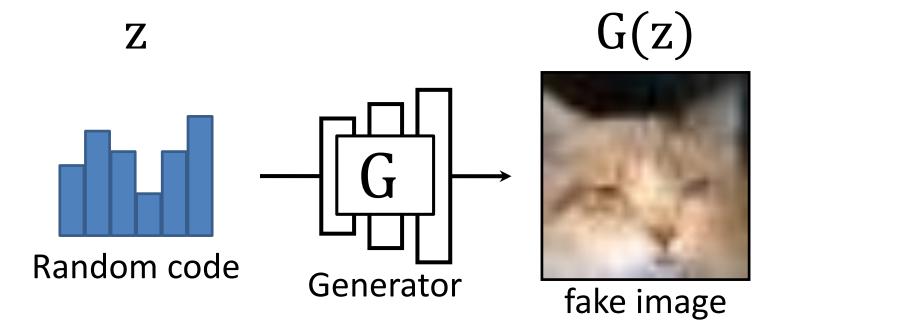
Generating images is hard!

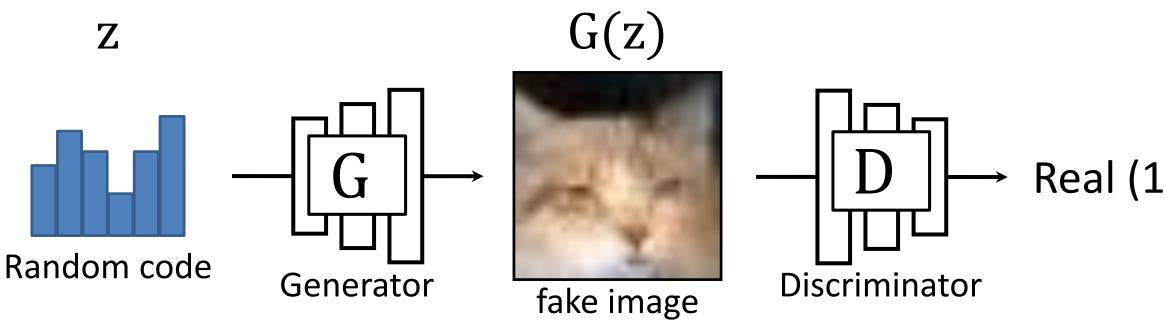




28x28 pixels

Generative Adversarial Networks (GANs)

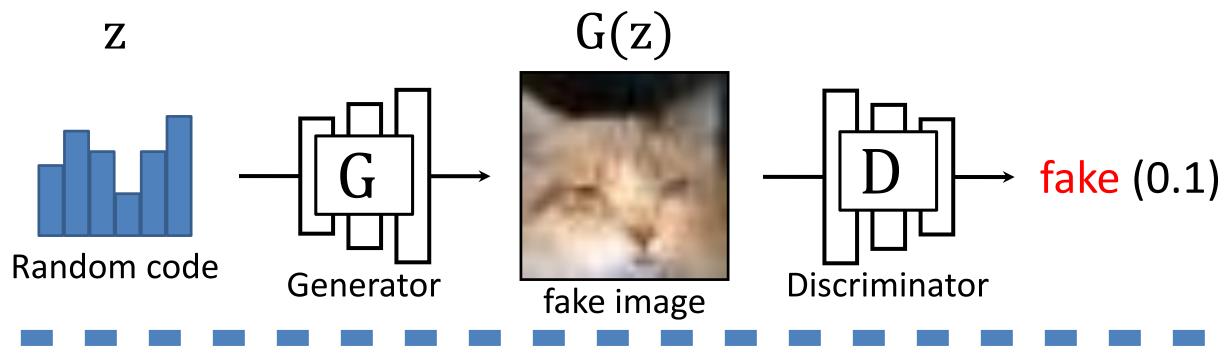




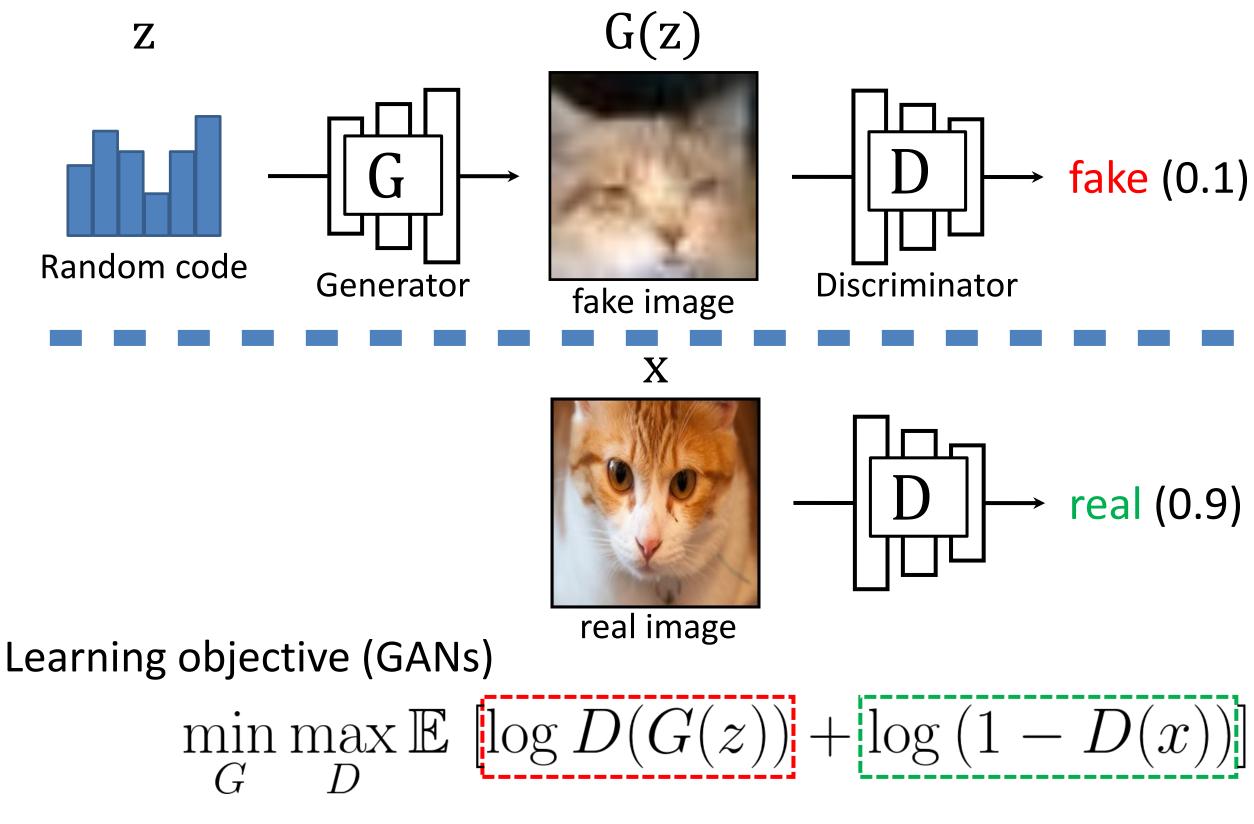
A two-player game:

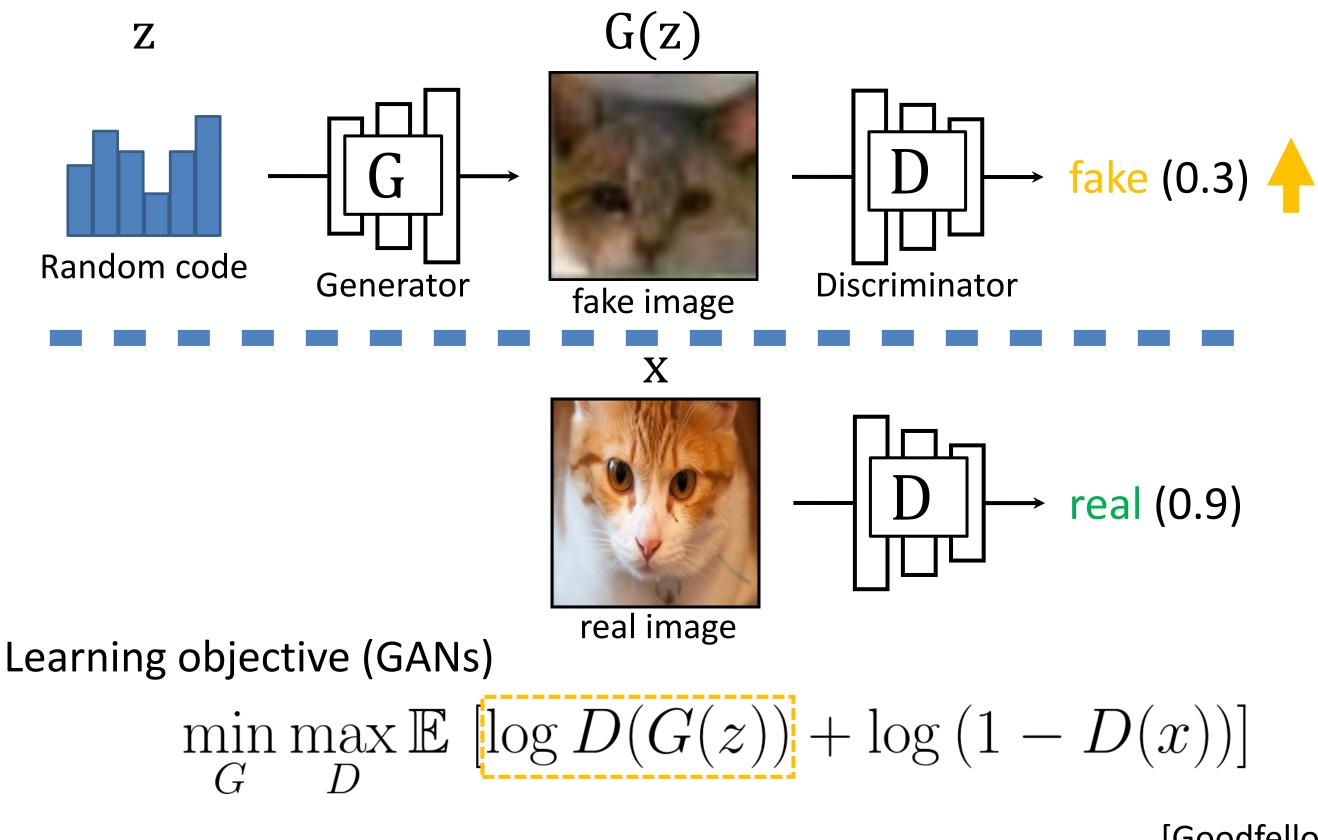
- G tries to generate fake images that can fool D.
- D tries to detect fake images. ullet

Real (1) or fake (0)?



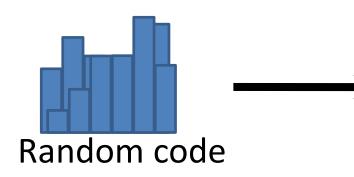
Learning objective (GANs) $\min_{G} \max_{D} \mathbb{E} \left[\log D(G(z)) \right]$





Limitations of GANs

• No user control.



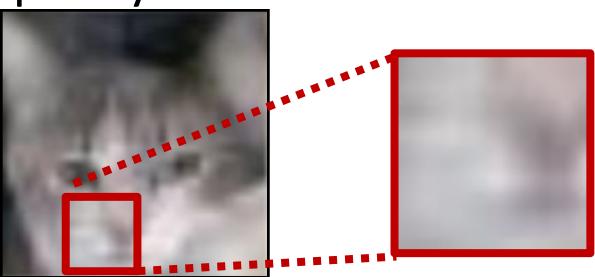
VS

Output

User input

• Low resolution and quality.





Output

Contributions

Co-authors:

Phillip Isola, Taesung Park, Ting-Chun Wang Richard Zhang, Tinghui Zhou, Ming-Yu Liu, Andrew Tao Jan Kautz, Bryan Catanzaro, Alexei A. Efros

Goals: Improve Control, Quality, and Resolution pix2pix **CycleGAN** pix2pixHD

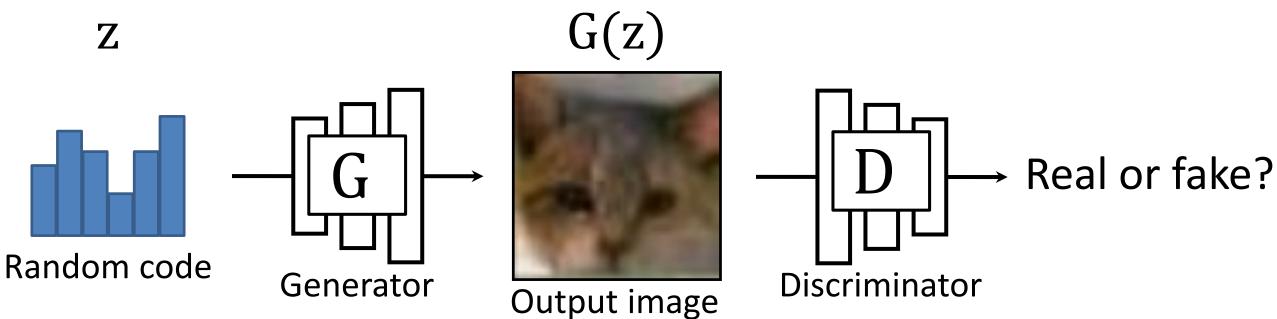


- Conditional on user inputs.
- Learning without pairs.
- High quality and resolution.

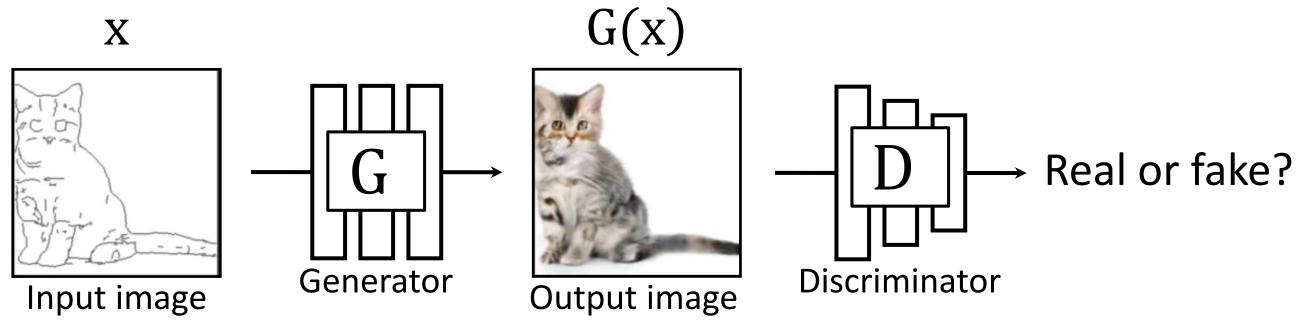
Goals: Improve Control, Quality, and Resolution pix2pix **CycleGAN** pix2pixHD



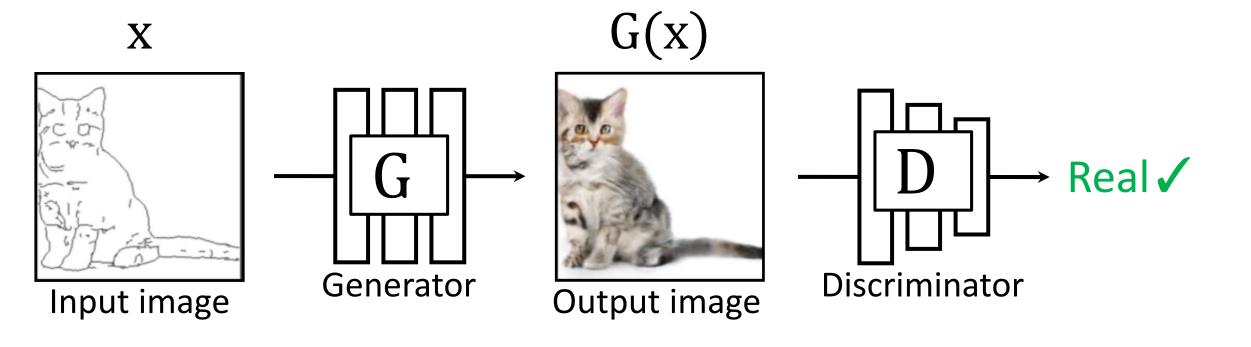
- Conditional on user inputs.
- Learning without pairs.
- High quality and resolution.



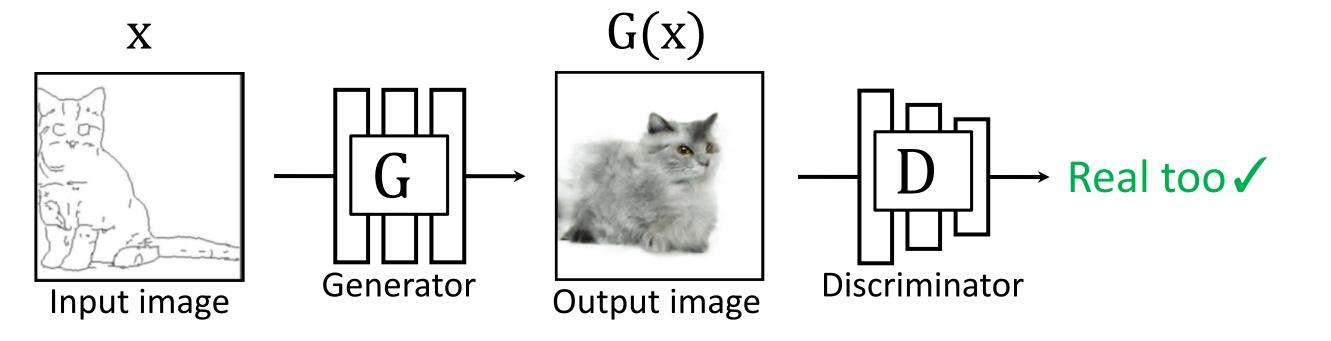
Learning objective (GANs) $\min \max \mathbb{E} \left[\log D(G(z)) + \log \left(1 - D(x)\right) \right]$ GD[Goodfellow et al. 2014]



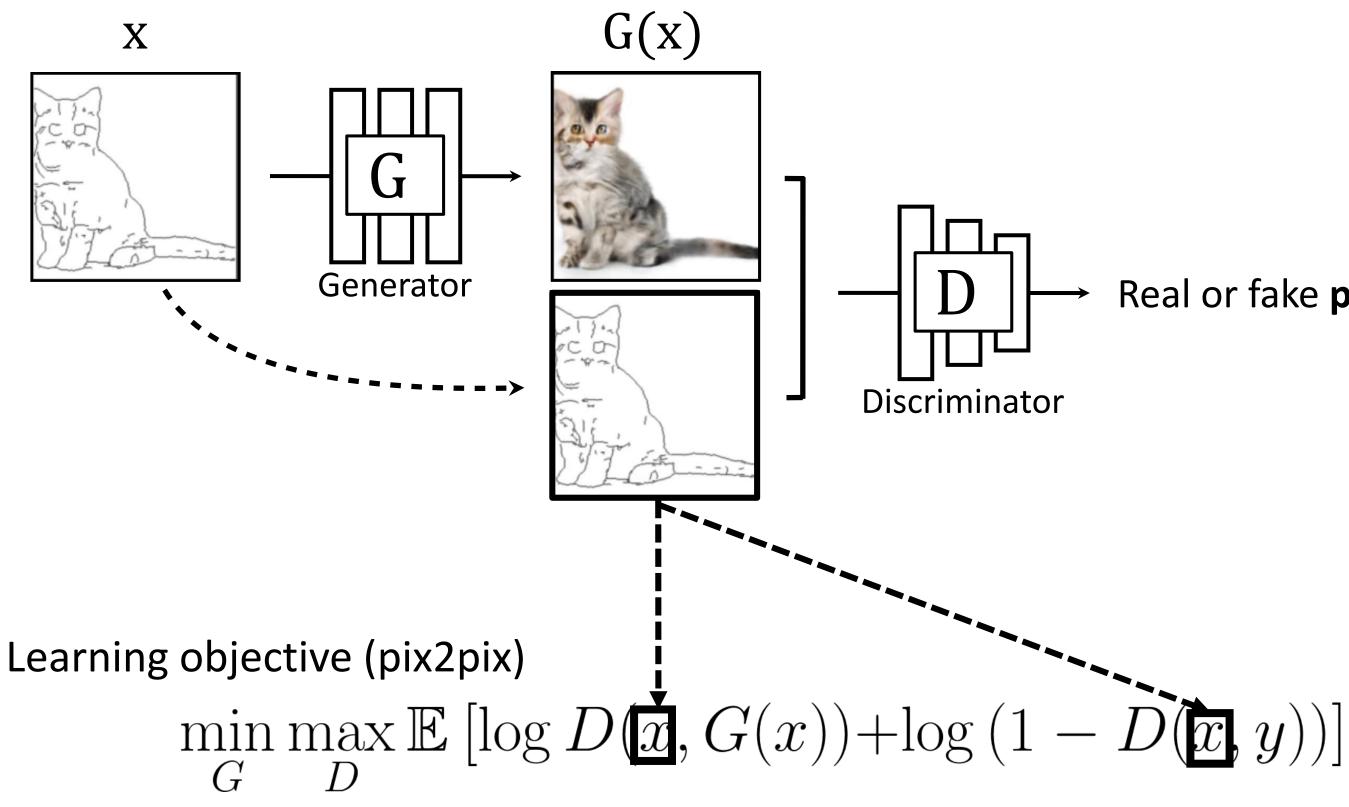
Learning objective (pix2pix) $\min \max \mathbb{E}\left[\log D(G(x)) + \log \left(1 - D(y)\right)\right]$ G



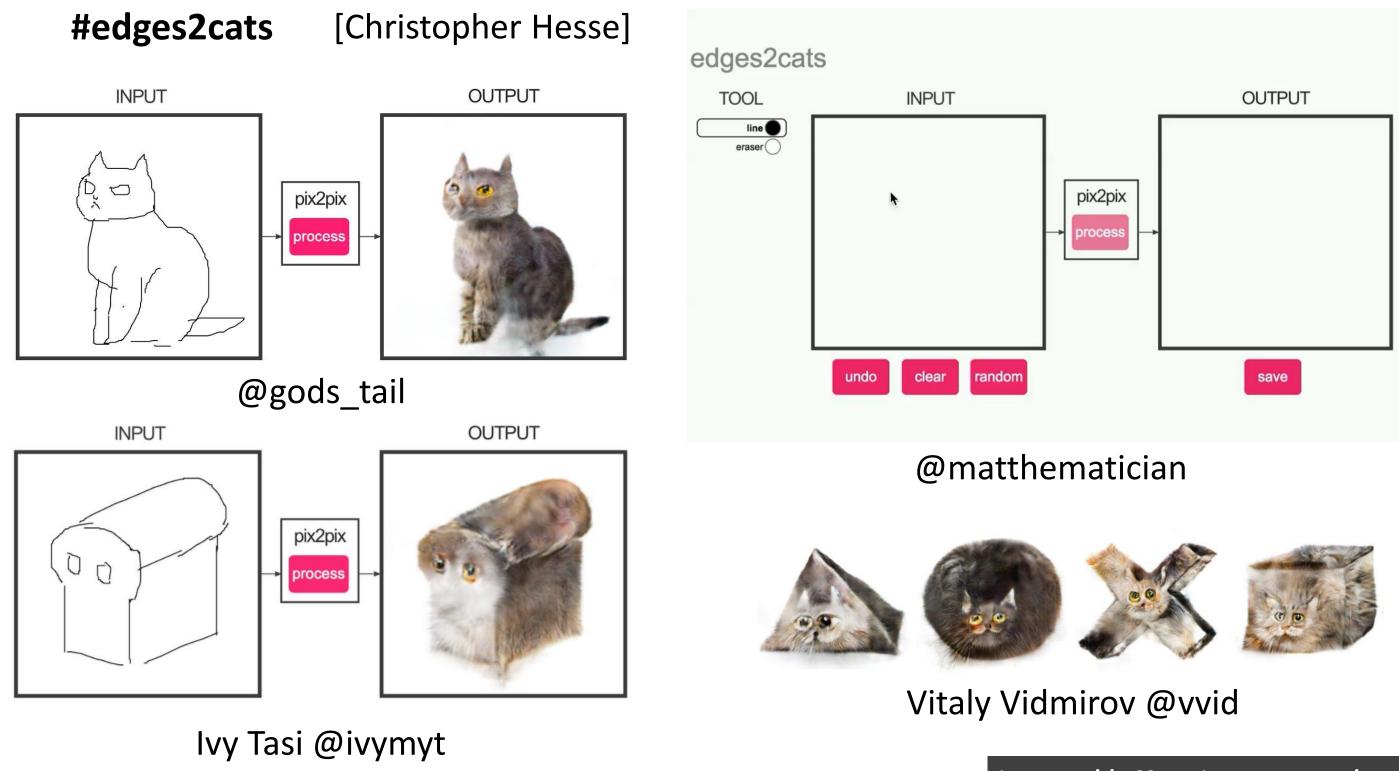
Learning objective (pix2pix) $\min \max \mathbb{E}\left[\log D(G(x)) + \log \left(1 - D(y)\right)\right]$ G



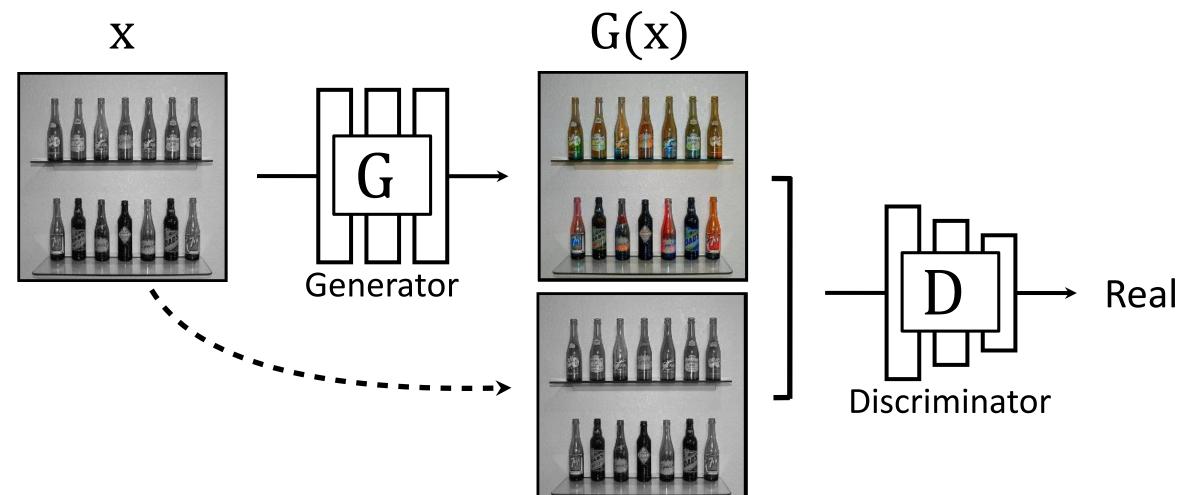
Learning objective (pix2pix) $\min \max \mathbb{E}\left[\log D(G(x)) + \log \left(1 - D(y)\right)\right]$ G



Real or fake **pair** ?



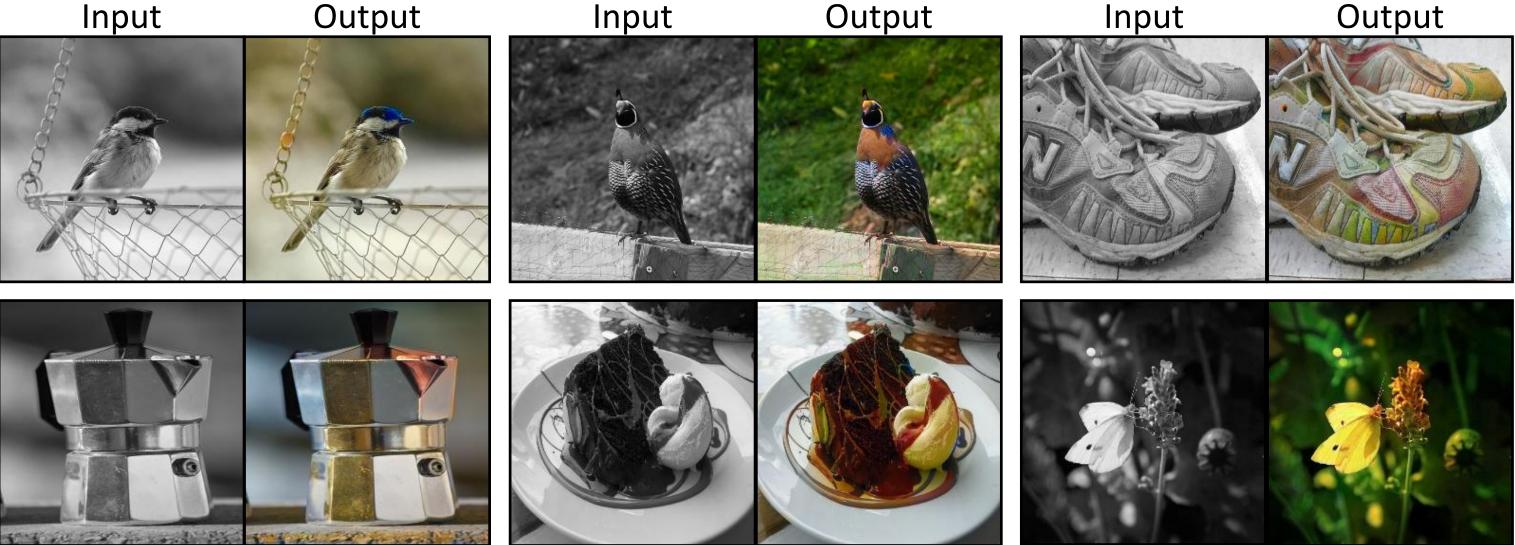
https://affinelayer.com/pixsrv/



Input: Skayskale Outputp Photolor

Real or fake **pair** ?

Automatic Colorization with pix2pix



Data from [Russakovsky et al. 2015]

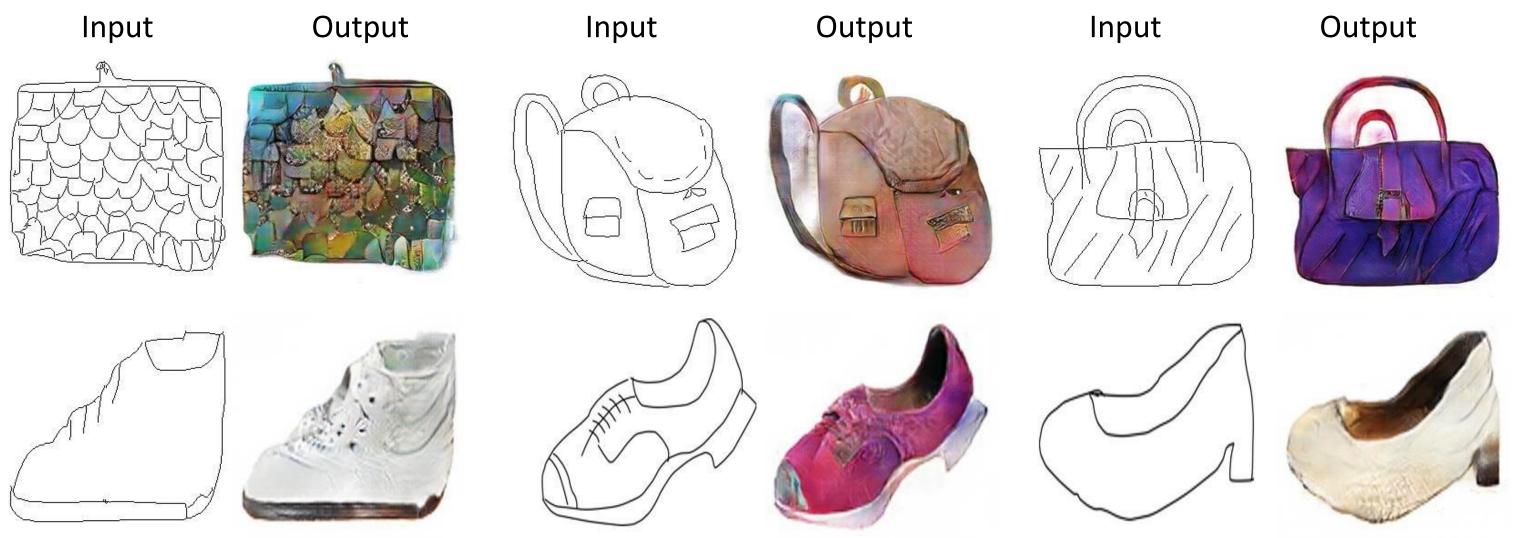
Interactive Colorization

[Zhang*, Zhu*, Isola, Geng, Lin, Yu, Efros, 2017]

$Edges \rightarrow Images$

Edges from [Xie & Tu, 2015]

Sketches → Images



Trained on Edges \rightarrow Images

Data from [Eitz, Hays, Alexa, 2012]

Input

Data from [<u>maps.google.com</u>]

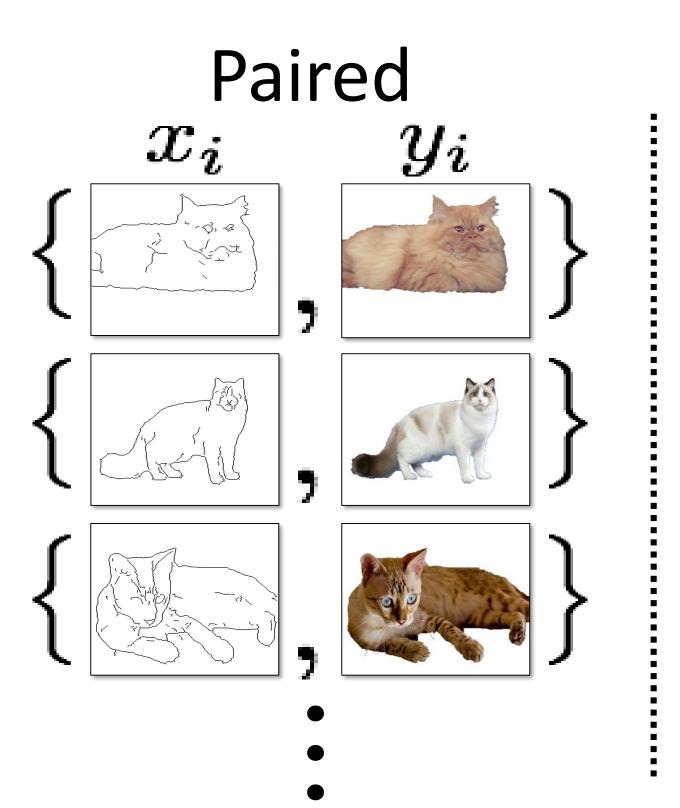
Groundtruth

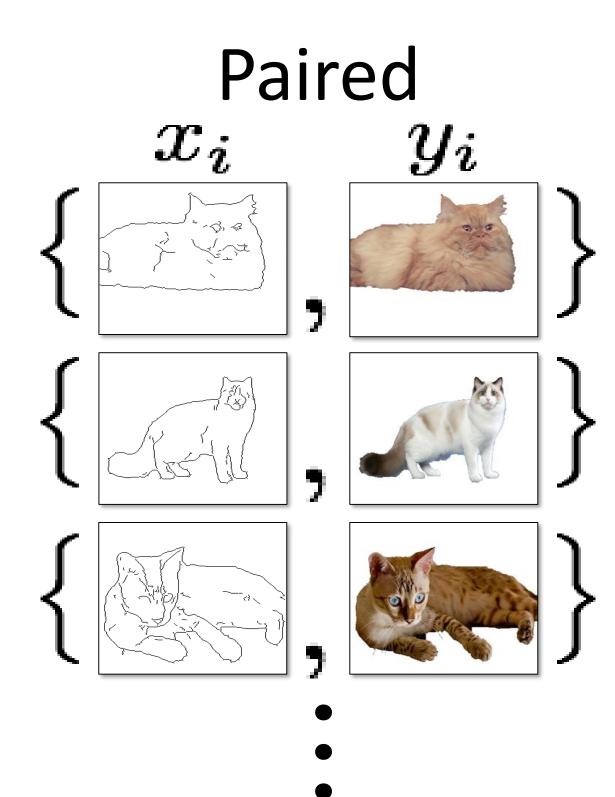
Input

Output

Groundtruth

Data from [maps.google.com]



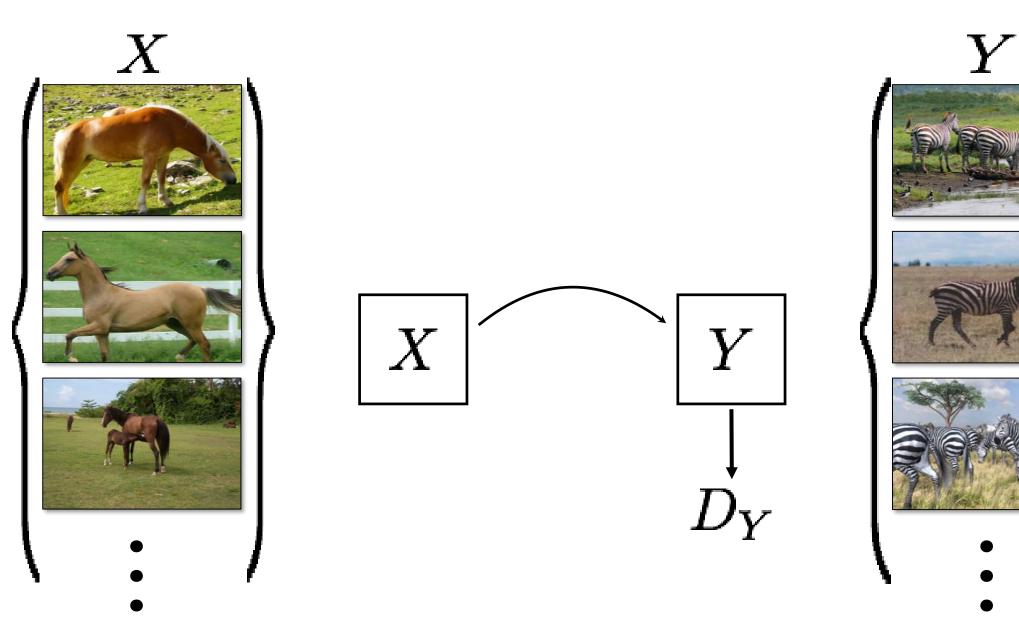


Unpaired X

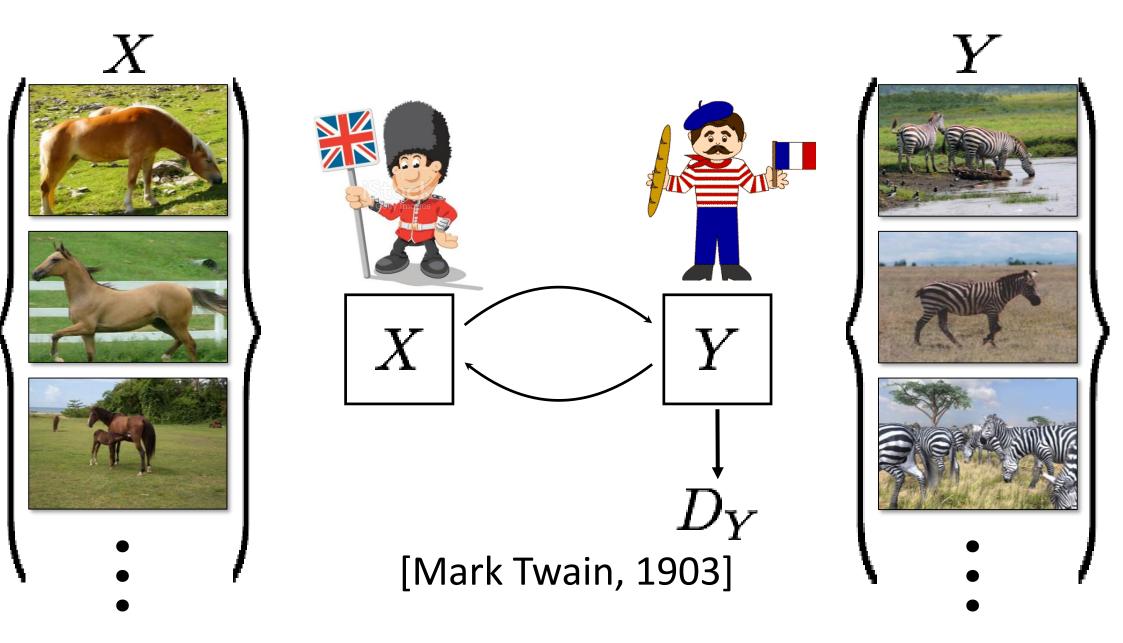
Goals: Improve Control, Quality, and Resolution pix2pix **CycleGAN** pix2pixHD

- Conditional on user inputs.
- Learning without pairs.
- High quality and resolution.

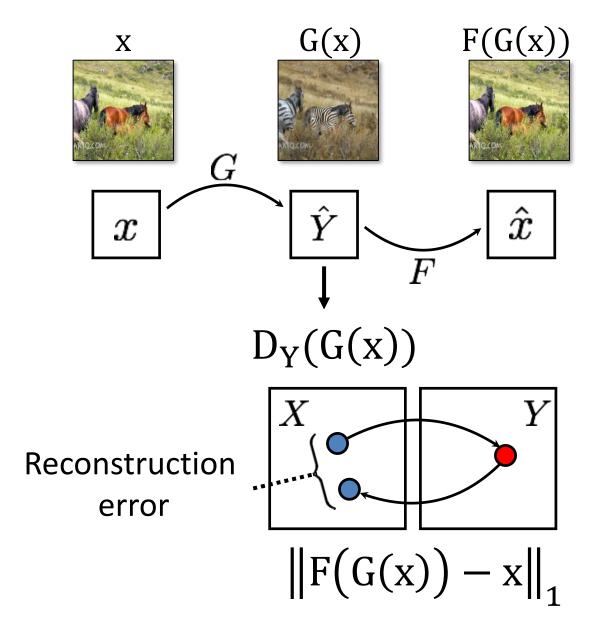
Cycle-Consistent Adversarial Networks



Cycle-Consistent Adversarial Networks

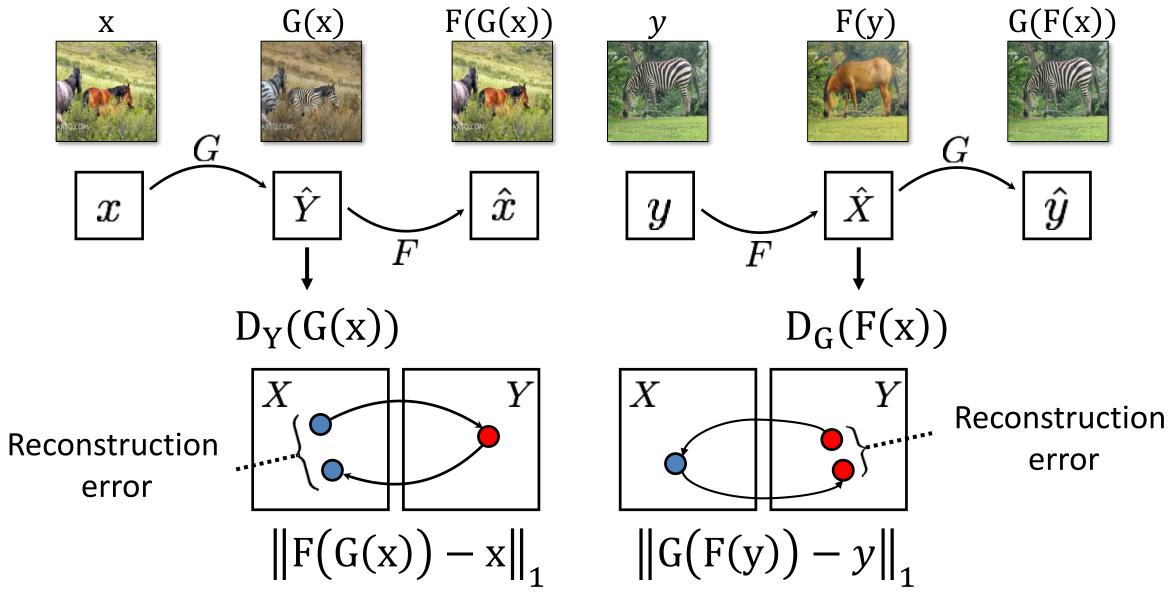


Cycle Consistency Loss



See also [Yi et al., 2017], [Kim et al, 2017]

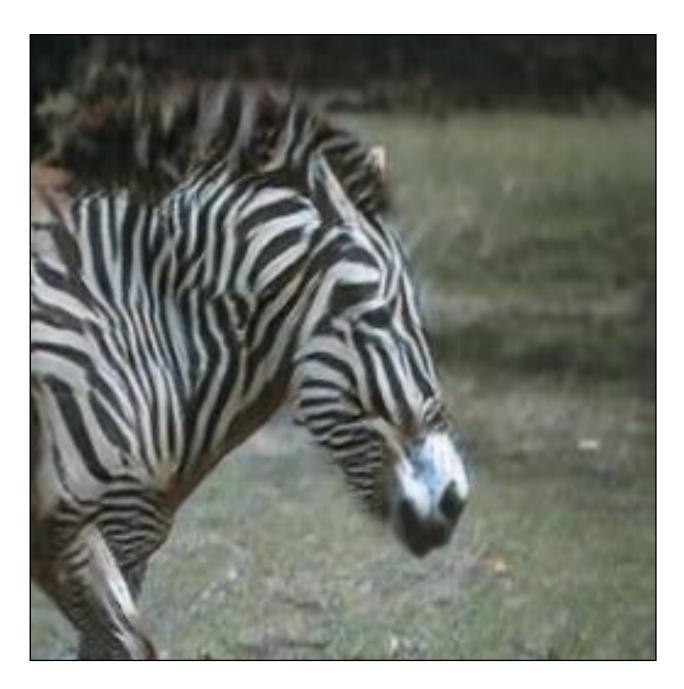
Cycle Consistency Loss



See also [Yi et al., 2017], [Kim et al, 2017]

Horse \rightarrow Zebra





Orange \rightarrow Apple

Collection Style Transfer

Photograph ©Alexei Efros

Monet

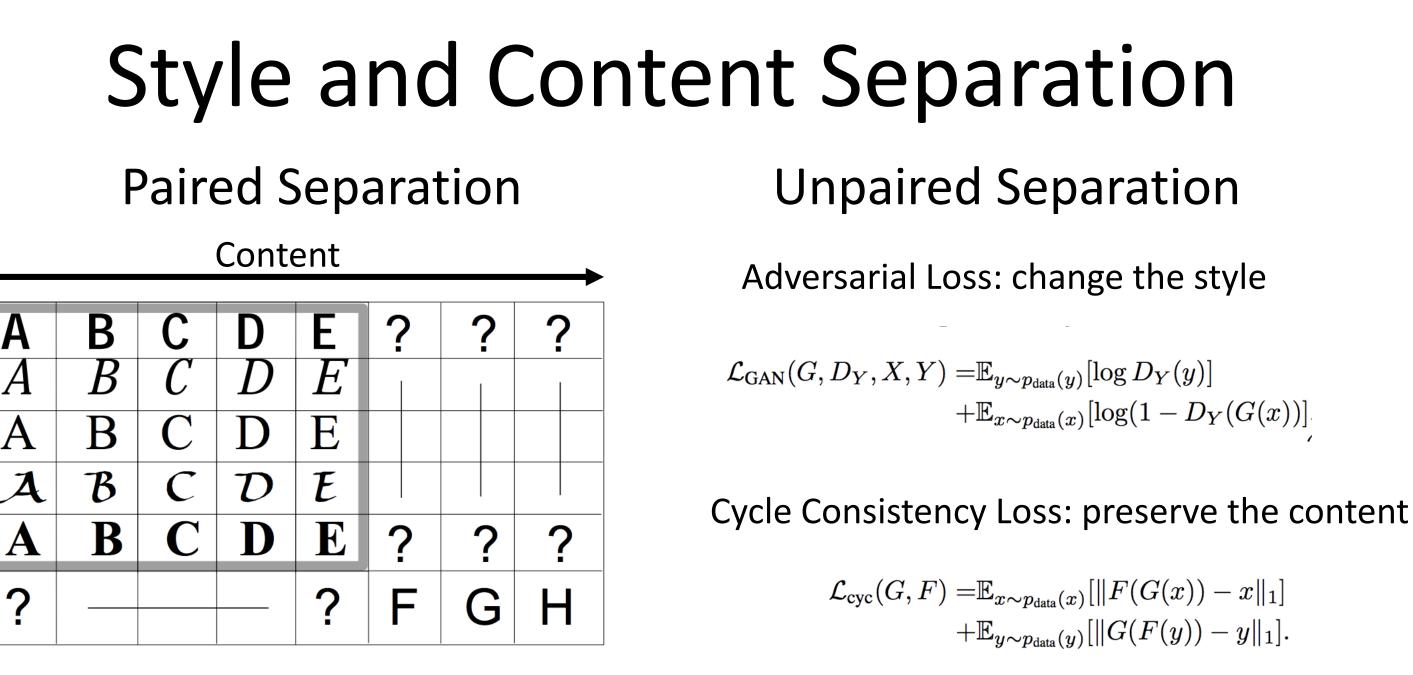
Cezanne

Van Gogh

Ukiyo-e

Monet's paintings → photographic style

Why CycleGAN works



Separating Style and Content with **Bilinear Models** [Tenenbaum and Freeman 2000']

Style

Two empirical assumptions:

- content is easy to keep.
- style is easy to change.

 $+\mathbb{E}_{x\sim p_{\text{data}}(x)}[\log(1-D_Y(G(x)))]$

 $+\mathbb{E}_{y \sim p_{\text{data}}(y)}[\|G(F(y)) - y\|_{1}].$

Neural Style Transfer [Gatys et al. 2015]

Style and Content:

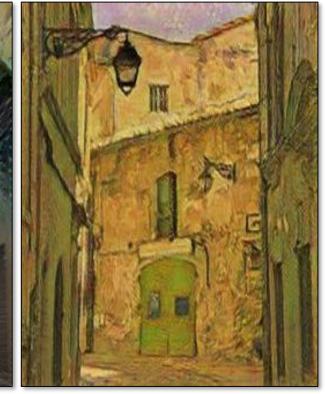
Content: feature difference Style: Gram Matrix difference Both losses are hard-coded.

PRISMA

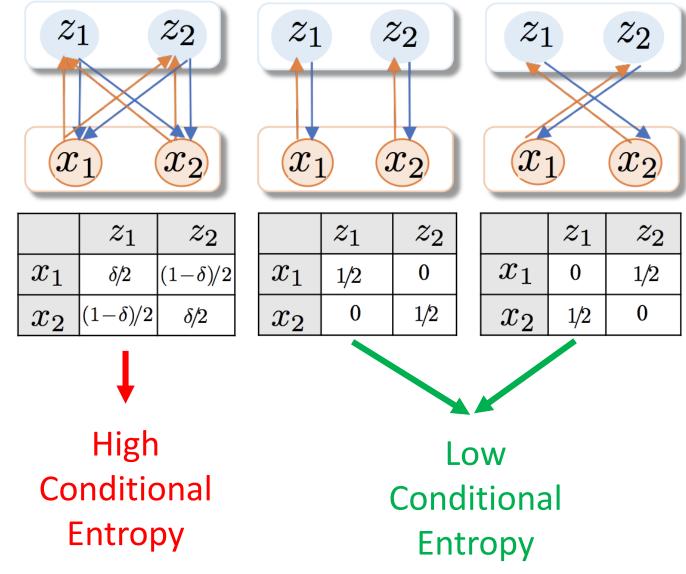
Photo \rightarrow Van Gogh

horse \rightarrow zebra

CycleGAN



Cycle Loss upper bounds Conditional Entropy



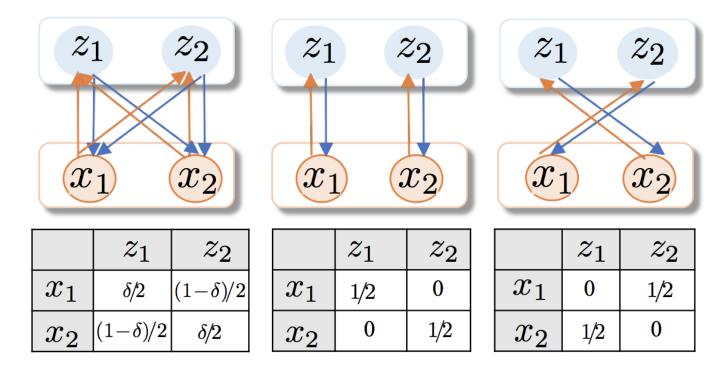
Conditional Entropy

$$H^{\pi}(\boldsymbol{x}|\boldsymbol{z}) \triangleq -\mathbb{E}_{\pi(\boldsymbol{x},\boldsymbol{z})}$$

"ALICE: Towards Understanding Adversarial Learning for Joint Distribution Matching" [Li et al. NIPS 2017]. Also see [Tiao et al. 2018] "CycleGAN as Approximate Bayesian Inference"

$\left[\log \pi(\boldsymbol{x}|\boldsymbol{z})\right]$

Cycle Loss upper bounds Conditional Entropy



Conditional Entropy $\left[\log \pi(\boldsymbol{x}|\boldsymbol{z})\right]$

$$H^{\pi}(\boldsymbol{x}|\boldsymbol{z}) \triangleq -\mathbb{E}_{\pi(\boldsymbol{x},\boldsymbol{z})}|$$

Lemma 3 For joint distributions $p_{\theta}(x, z)$ or $q_{\phi}(x, z)$, we have

$$\begin{aligned} H^{q_{\phi}}(\boldsymbol{x}|\boldsymbol{z}) &\triangleq -\mathbb{E}_{q_{\phi}(\boldsymbol{x},\boldsymbol{z})}[\log q_{\phi}(\boldsymbol{x}|\boldsymbol{z})] = -\mathbb{E}_{q_{\phi}(\boldsymbol{x},\boldsymbol{z})}[\log p_{\theta}(\boldsymbol{x}|\boldsymbol{z})] - \mathbb{E}_{q_{\phi}(\boldsymbol{z})}[\mathrm{KL}(\boldsymbol{x}|\boldsymbol{z})] \\ &\leq -\mathbb{E}_{q_{\phi}(\boldsymbol{x},\boldsymbol{z})}[\log p_{\theta}(\boldsymbol{x}|\boldsymbol{z})] \triangleq \mathcal{L}_{\mathrm{Cycle}}(\boldsymbol{\theta},\boldsymbol{\phi}) \end{aligned}$$

"ALICE: Towards Understanding Adversarial Learning for Joint Distribution Matching" [Li et al. NIPS 2017]. Also see [Tiao et al. 2018] "CycleGAN as Approximate Bayesian Inference"

$q_{oldsymbol{\phi}}(oldsymbol{x}|oldsymbol{z}) \| p_{oldsymbol{ heta}}(oldsymbol{x}|oldsymbol{z}))]$ (6)

Customizing Gaming Experience

Grand Theft Auto v (GTA5)

Street view images in German cities

Data from [Richter et al., 2016], [Cordts et al, 2016]

Customizing Gaming Experience

Output image with Geo Geo Street view style

Domain Adaptation with CycleGAN

Train on GTA5 data

Test on real images

	meanIOU	Per-pixe
Oracle (Train and test on Real)	60.3	S
Train on CG, test on Real	17.9	5

See Judy Hoffman's talk at 14:30 "Adversarial Domain Adaptation"

el accuracy

- 93.1
- 54.0

Domain Adaptation with CycleGAN

Test on real images

GTA5 data + Domain adaptation

	meanIOU	Per-pixe
Oracle (Train and test on Real)	60.3	ç
Train on CG, test on Real	17.9	5
FCN in the wild [Previous STOA]	27.1	

See Judy Hoffman's talk at 14:30 "Adversarial Domain Adaptation"

el accuracy

- 93.1
- 54.0

Domain Adaptation with CycleGAN

Train on CycleGAN data

Test on real images

	meanIOU	Per-pixe
Oracle (Train and test on Real)	60.3	9
Train on CG, test on Real	17.9	5
FCN in the wild [Previous STOA]	27.1	
Train on CycleGAN, test on Real	34.8	3

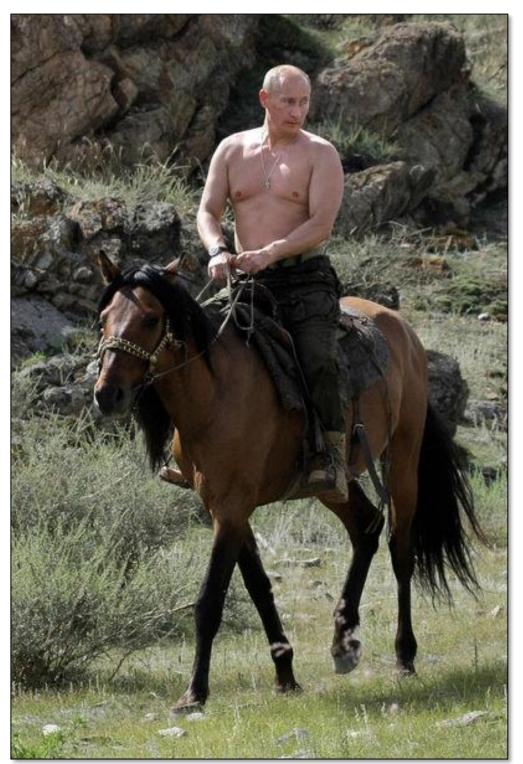
See Judy Hoffman's talk at 14:30 "Adversarial Domain Adaptation"

el accuracy

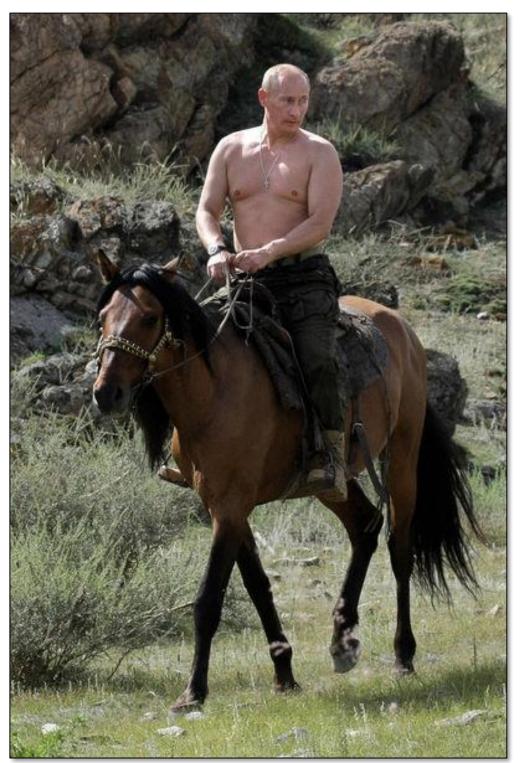
- 93.1
- 54.0

82.8

Failure case



Failure case



Open Source CycleGAN and pix2pix

≡ pytorch-CycleGAN-and-pix2pix

Image-to-image translation in PyTorch (e.g., horse2zebra, edges2cats, and more)

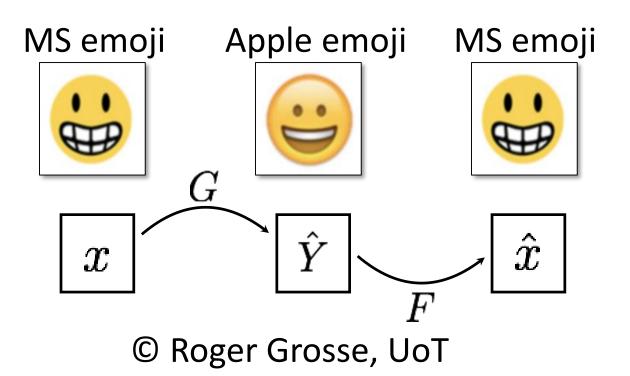
\equiv CycleGAN

Software that can generate photos from paintings, turn horses into zebras, perform style transfer, and more.

- popular GitHub research projects since 2017. cited papers in Graphics/CV/ML since 2017.
- Among the most • Among the most

CycleGAN in Classes

CycleGAN results by students



© Alena Harley, FastAl

Stained glass art

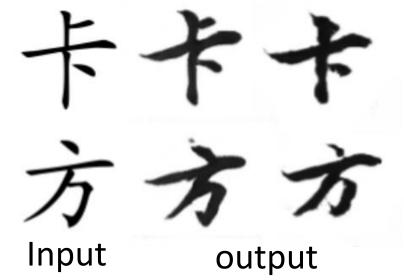
Applications and Extentions Object Editing [Liang et al.]

Attribute Editing [Lu et al.]

Bald Bangs Low-res arXiv:1705.09966

Mask Input arXiv:1708.00315

Front/Character Transfer [Ignatov et al.] Data generation [Wang et al.]



arXiv: 1801.08624

Output

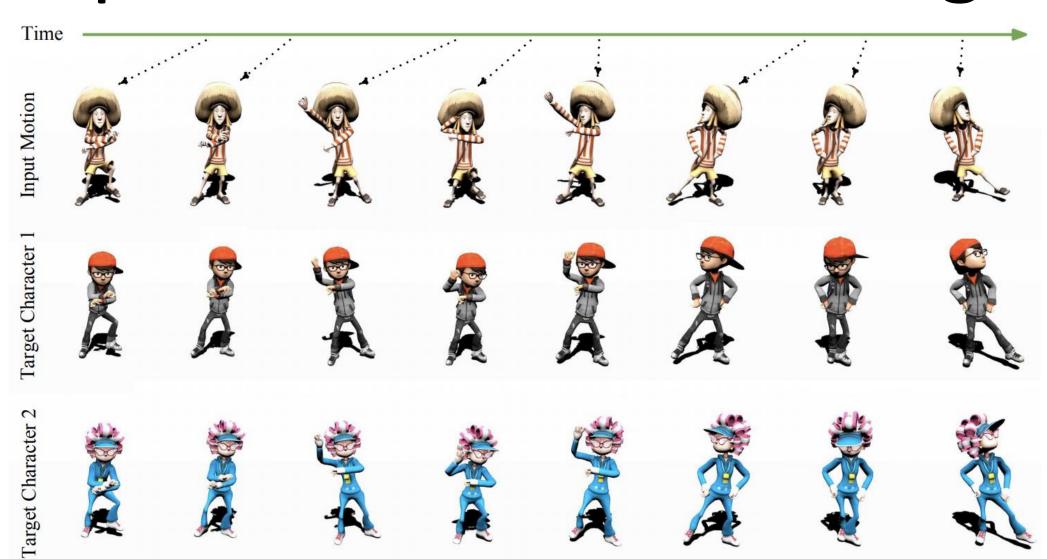
Photo Enhancement

WESPE: Weakly Supervised Photo Enhancer for Digital Cameras. arxiv 1709.01118 Andrey Ignatov, Nikolay Kobyshev, Kenneth Vanhoey, Radu Timofte, Luc Van Gool

Image Dehazing

Cycle-Dehaze: Enhanced CycleGAN for Single Image Dehazing. CVPRW 2018 Deniz Engin* Anıl Genc*, Hazım Kemal Ekenel

Unsupervised Motion Retargeting



Neural Kinematic Networks for Unsupervised Motion Retargetting. CVPR 2018 (oral) Ruben Villegas, Jimei Yang, Duygu Ceylan, Honglak Lee

Neural Kinematic Networks for Unsupervised Motion Retargetting. CVPR 2018 (oral) Ruben Villegas, Jimei Yang, Duygu Ceylan, Honglak Lee

Applications Beyond Computer Vision

- Medical Imaging and Biology [Wolterink et al., 2017]
- Voice conversion [Fang et al., 2018, Kaneko et al., 2017]
- Cryptography [CipherGAN: Gomez et al., ICLR 2018]
- Robotics

. . .

- NLP: Unsupervised machine translation.
- NLP: Text style transfer.

Vision 2017] 17]

Deep MR to CT Synthesis using Unpaired Data

Jelmer M. Wolterink¹, Anna M. Dinkla², Mark H.F. Savenije², Peter R. Seevinck¹, Cornelis A.T. van den Berg², Ivana Išgum¹

- ¹ Image Sciences Institute, University Medical Center Utrecht, The Netherlands j.m.wolterink@umcutrecht.nl
- ² Department of Radiotherapy, University Medical Center Utrecht, The Netherlands



Input MR

Generated CT

Ground truth CT

Latest from #CycleGAN

Input dog

Output cat

Input cat

Output dog

© itok_msi

CycleGAN for Customized Gaming © Cahintan Trivedi

Battle royale games

Final result

Fortnite Input

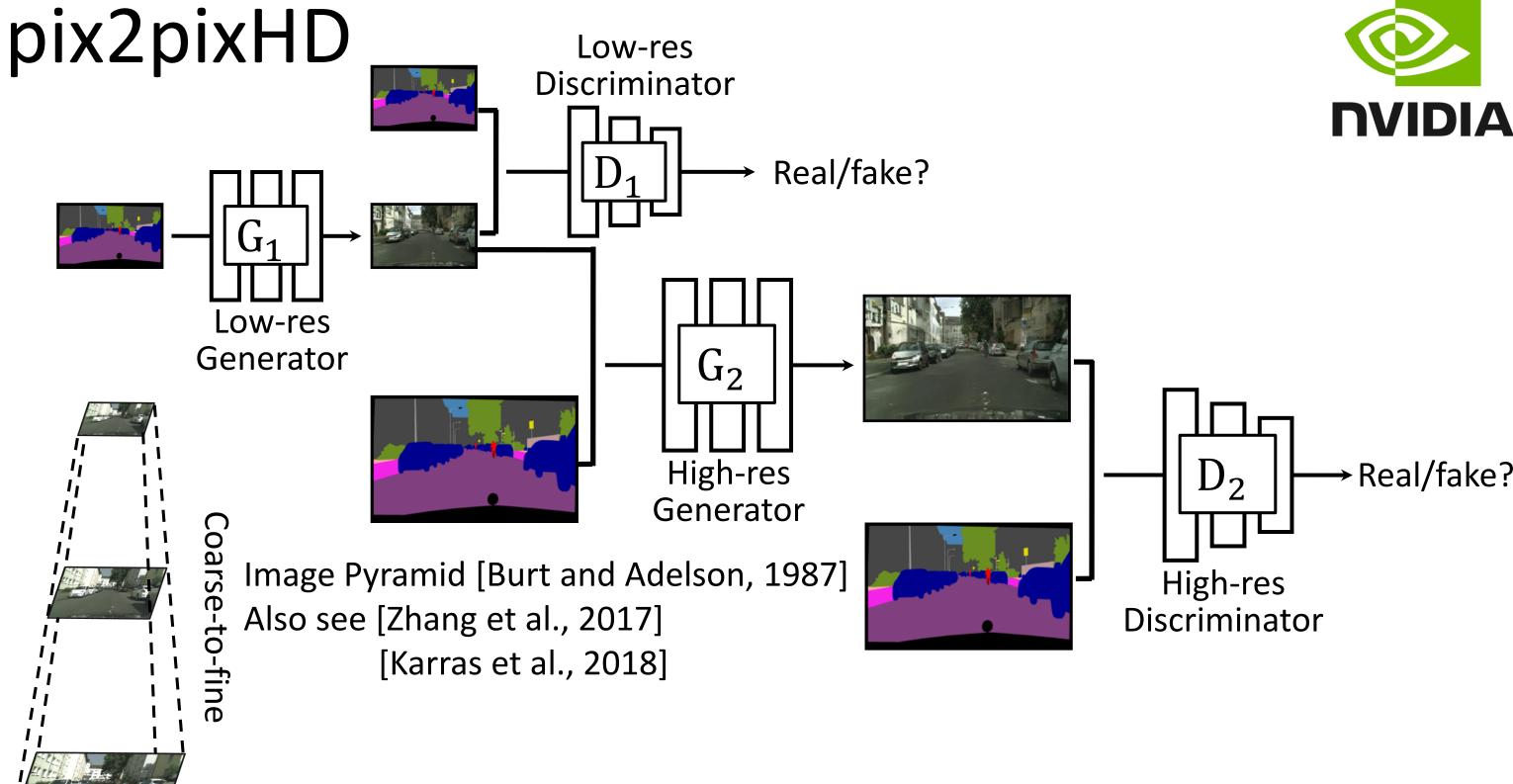
Goals: Improve Control, Quality, and Resolution pix2pix **CycleGAN** pix2pixHD



- Conditional on user inputs.
- Learning without pairs.
- High quality and resolution.

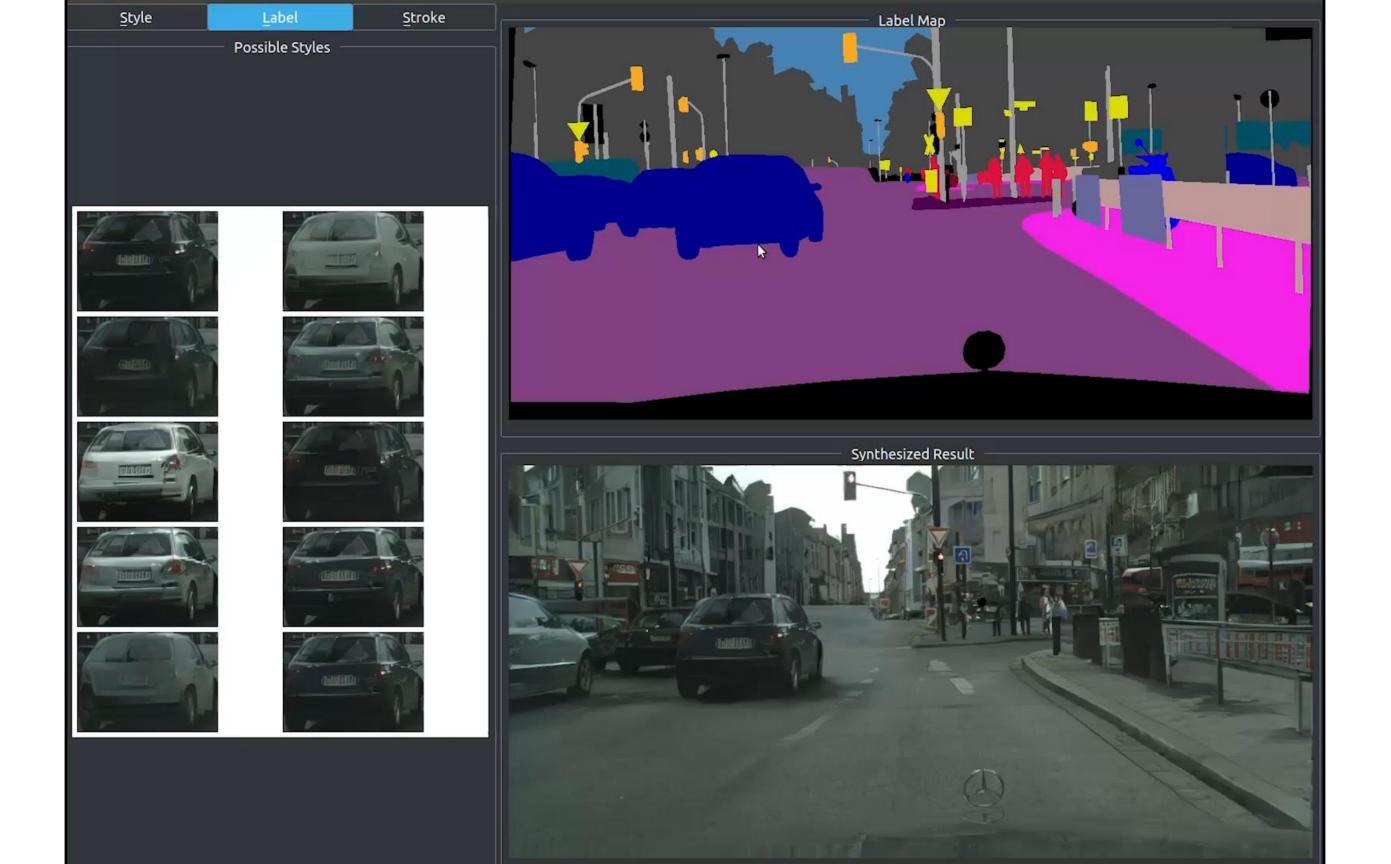
The Curse of Dimensionality

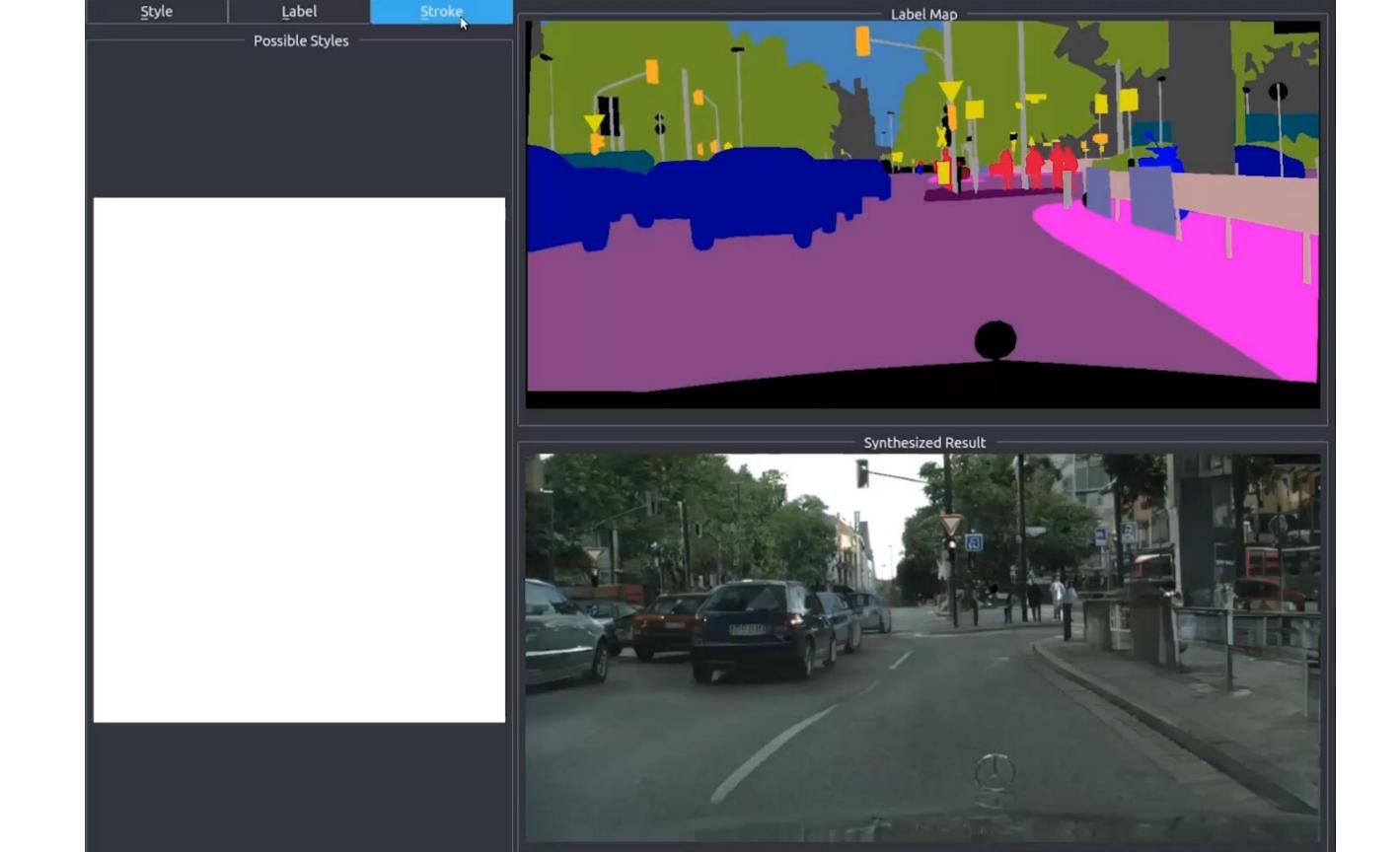
1.1.1. Pix2pix output



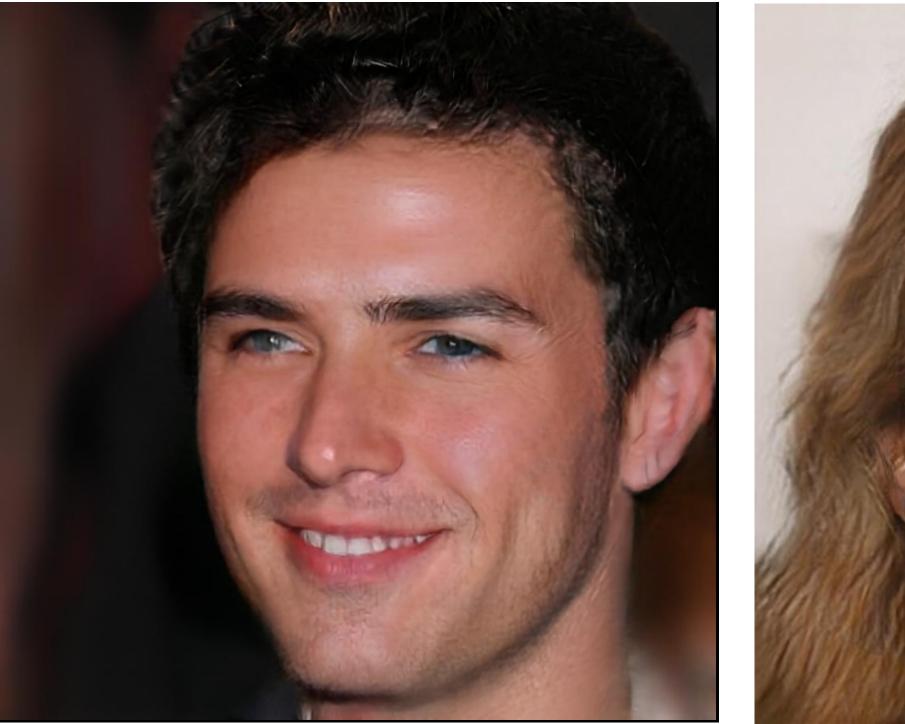
[Wang, Liu, Zhu, Tao, Kautz. Catanzaro, 2018]

pix2pixHD: 2048×1024



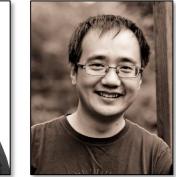


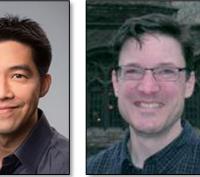
pix2pixHD for sketch \rightarrow face

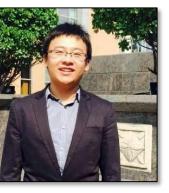


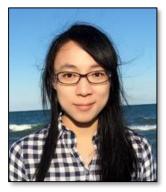
Improve Continuity and Besolution **CycleGAN** pix2pix pix2pixHD

- Learning to generate images from trillions of photos.
- Help more people tell their own visual stories.









Thank You!

