GAMES Webinar: Rendering Tutorial 2

Monte Carlo Methods

Shuang Zhao

Assistant Professor Computer Science Department University of California, Irvine

Outline

- 1. Monte Carlo integration
 - A powerful numerical tool for estimating complex integrals
- 2. Rendering equation
 - The physical framework governing light transport
- 3. Path tracing
 - Basically, 1 + 2
- 4. Path integral formulation
- 5. Advanced methods

Monte Carlo Integration

GAMES Webinar: Rendering Tutorial 2

Why Monte Carlo?

- The "gold standard" approach to solve the RTE
- Advantages:
 - Provides estimates with quantifiable uncertainty
 - Adaptable to systems with complex geometries

Monte Carlo Integration

• A powerful framework for computing integrals

$$\int_{\Omega} f(\boldsymbol{x}) \, \mathrm{d} \mu(\boldsymbol{x}) = ?$$

- Numerical
- Nondeterministic (i.e., using randomness)
- Scalable to *high-dimensional* problems

Random Variables

- (Discrete) random variable X
- Possible outcomes: *x*₁, *x*₂, ..., *x*_n
 - with probability masses $p_1, p_2, ..., p_n$ such that

$$\sum_{i=1}^{n} p_i = 1$$

- E.g., "fair" coin
 - Outcomes: x_1 = "head", x_2 = "tail"
 - Probabilities: $p_1 = p_2 = \frac{1}{2}$

Random Variables

- (Continuous) random variable X
- Possible outcomes: $[a,b] \subset \mathbb{R}$
 - with probability density function (PDF) p(x) satisfying

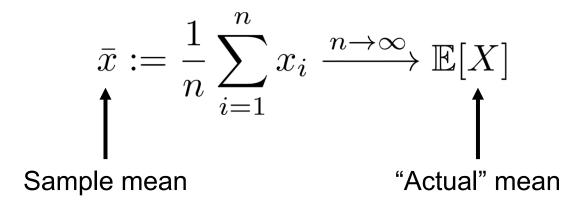
$$\int_{a}^{b} p(x) \, \mathrm{d}x = 1$$

• Cumulative density function (CDF) *P*(*x*) given by

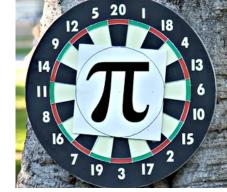
$$P(x) := \mathbb{P}[X \le x] = \int_a^x p(y) \, \mathrm{d}y$$

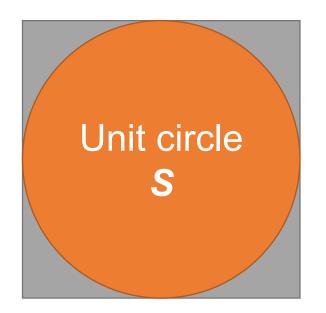
Strong Law of Large Numbers

Let $x_1, x_2, ..., x_n$ be *n* independent observations (aka. **samples**) of *X*



Example: Evaluating *T*****





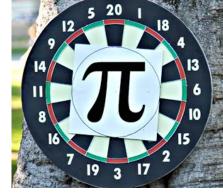
• Let **X** be a point uniformly distributed in the square

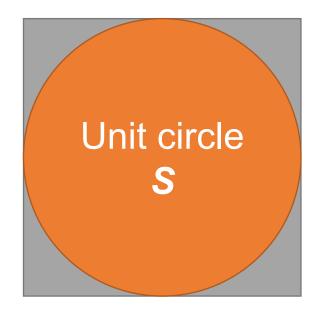
•
$$\mathbb{P}[\boldsymbol{X} \in S] = \frac{\pi}{4}$$

• Let
$$f(\mathbf{X}) := \begin{cases} 4 & \mathbf{X} \in S \\ 0 & \mathbf{X} \notin S \end{cases}$$
, then

Circle area = π Square area = 4 $\mathbb{E}[f(\mathbf{X})] = 4 \cdot \mathbb{P}[\mathbf{X} \in S] + 0 \cdot \mathbb{P}[\mathbf{X} \notin S]$ $= 4 \cdot \frac{\pi}{4} = \pi$

Example: Evaluating *T*****





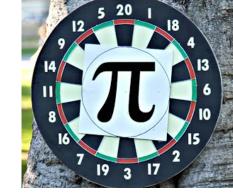
Circle area = π Square area = 4

$$f(\boldsymbol{X}) := \begin{cases} 4 & \boldsymbol{X} \in S \\ 0 & \boldsymbol{X} \notin S \end{cases}$$

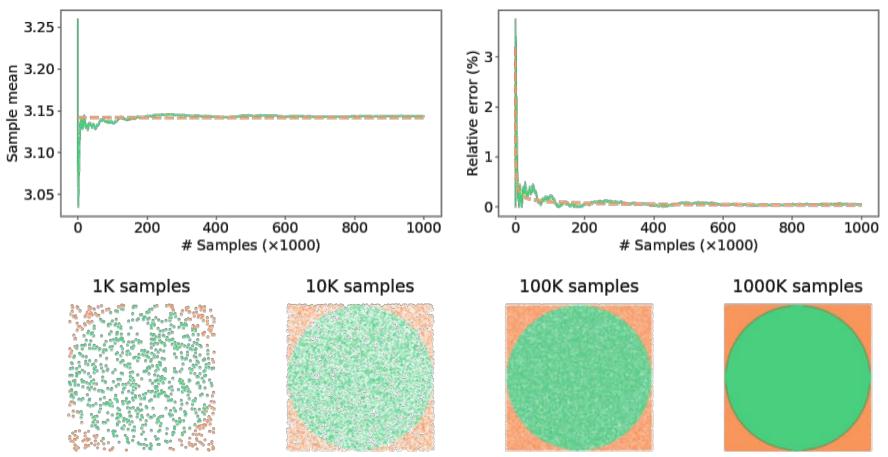
- Simple solution for computing π :
 - Generate *n* samples **x**₁, ..., **x**_n independently

• Compute
$$\frac{1}{n} \sum_{i=1}^{n} f(\boldsymbol{x}_i)$$

Live demo



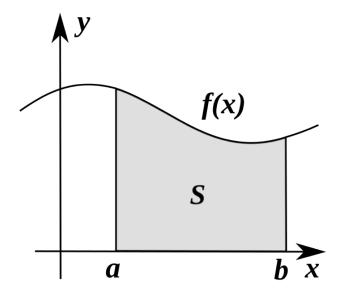
Example: Evaluating π



Integral

 f(x): one-dimensional scalar function

$$I = \int_{a}^{b} f(x) \,\mathrm{d}x$$



Deterministic Integration

• Quadrature rule:

$$I = \int_{a}^{b} f(x) \, \mathrm{d}x \approx \sum_{i=1}^{n} \frac{b-a}{n} f(x_{i})$$

$$\overset{4}{\underset{-2}{\overset{-2}{\overset{-1}{\overset{1}}{\overset{-1}{\overset{-1}{\overset{1}}{\overset{1}}{\overset{1}}{\overset{1}}}{\overset{$$

- Scales poorly with high dimensionality:
 - Needs *n^m* bins for a *m*-dimensional problem
- We have a high-dimensional problem!

Monte Carlo Integration: Overview

- **Goal:** Estimating $I = \int_a^b f(x) \, dx$
- Idea: Constructing random variable $\langle I \rangle$
 - Such that $\mathbb{E}[\langle I \rangle] = I$
 - $\langle I \rangle$ is called an unbiased estimator of I
- But how?

Monte Carlo Integration

Let p() be any probability density function over
 [a, b] and X be a random variable with density p

• Let
$$\langle I \rangle := \frac{f(X)}{p(X)}$$
, then:

$$\mathbb{E}[g(X)] = \int_{a}^{b} g(x) p(x) dx$$

$$\mathbb{E}[\langle I \rangle] = \mathbb{E}\left[\frac{f(X)}{p(X)}\right] = \int_{a}^{b} \frac{f(x)}{p(x)} p(x) dx = I$$

• To estimate $\mathbb{E}[\langle I \rangle]$: strong law of large numbers

Monte Carlo Integration

- Goal: to estimate $I = \int_a^b f(x) \, dx$
 - Pick a probability density function p(x)
 - Generate *n* independent samples:

$$x_1, x_2, \ldots, x_n \sim p$$

• Evaluate
$$\hat{I}_j := \frac{f(x_j)}{p(x_j)}$$
 for $j = 1, 2, ..., n$

• Return sample mean:
$$\bar{I} := \frac{1}{n} \sum_{j=1}^{n} \hat{I}_j$$

How to pick density function p()?

- In theory
 - (Almost) anything
- In practice:
 - Uniform distributions (almost) always work
 - As long as the domain is *bounded*
 - Choice of p() greatly affects the effectiveness (i.e., convergence rate) of the resulting estimator $\langle I \rangle$

Monte Carlo Integration "Hello, World!"

• Estimating
$$I = \int_0^1 5x^4 \, dx \quad \left(= x^5 \Big|_0^1 = 1 \right)$$

• Algorithm:

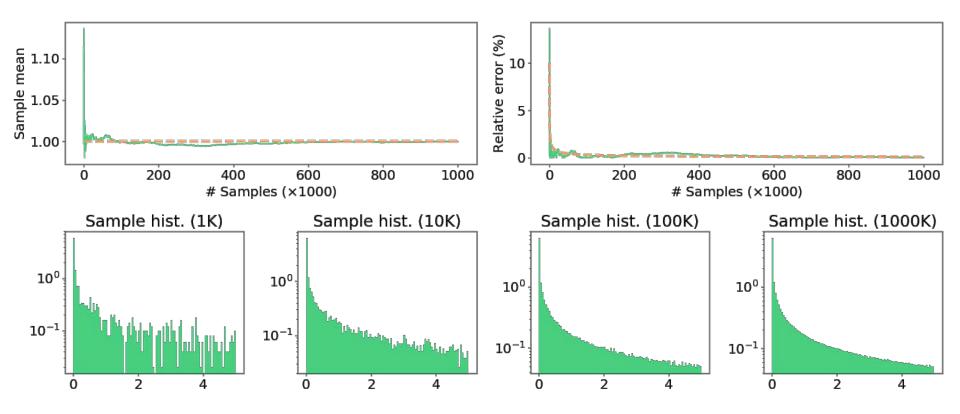
• Draw i.i.d x_1, x_2, \dots, x_n uniformly from [0, 1)

• Return
$$\frac{1}{n} \sum_{j=1}^{n} \frac{f(x_j)}{p(x_j)} = \frac{1}{n} \sum_{j=1}^{n} 5x_j^4$$

• Live demo

Monte Carlo Integration "Hello, World!"

• Estimating
$$I = \int_0^1 5x^4 \, dx \quad \left(= x^5 \Big|_0^1 = 1 \right)$$



GAMES Webinar

Shuang Zhao

Multiple Importance Sampling

• To estimate

$$I = \int_{\Omega} f(\boldsymbol{x}) \,\mathrm{d}\mu(\boldsymbol{x})$$

• Assume there are *n* probability densities p_1 , p_2 , ..., p_n to sample **x**. Then,

$$\langle I \rangle_{\text{MIS}} := \sum_{i=1}^{n} w_i(\boldsymbol{x}_i) \frac{f(\boldsymbol{x}_i)}{p_i(\boldsymbol{x}_i)} \quad \text{where } \boldsymbol{x}_i \sim p_i$$

is an unbiased estimator of I as long as:

- $\sum_{i=1}^{n} w_i(\boldsymbol{x}) = 1$ for all \boldsymbol{x} with $f(\boldsymbol{x}) \neq 0$
- $w_i(\boldsymbol{x}) = 0$ whenever $p_i(\boldsymbol{x}) = 0$

Weighting Functions

The balance heuristic

$$w_i(\boldsymbol{x}) = rac{p_i(\boldsymbol{x})}{\sum_{j=1}^n p_j(\boldsymbol{x})}$$

• Then,

$$\langle I \rangle_{\text{balance}} := \sum_{i=1}^{n} w_i(\boldsymbol{x}_i) \frac{f(\boldsymbol{x}_i)}{p_i(\boldsymbol{x}_i)} = \sum_{i=1}^{n} \frac{f(\boldsymbol{x}_i)}{\sum_{j=1}^{n} p_j(\boldsymbol{x}_i)}$$

- How "good" is the new estimator?
 - As long as there exists a "good" estimator for $I, \ \langle I \rangle_{\rm balance}$ will also be "good"

Example: MIS

1 denotes the *indicator function*

Consider the problem of evaluating:

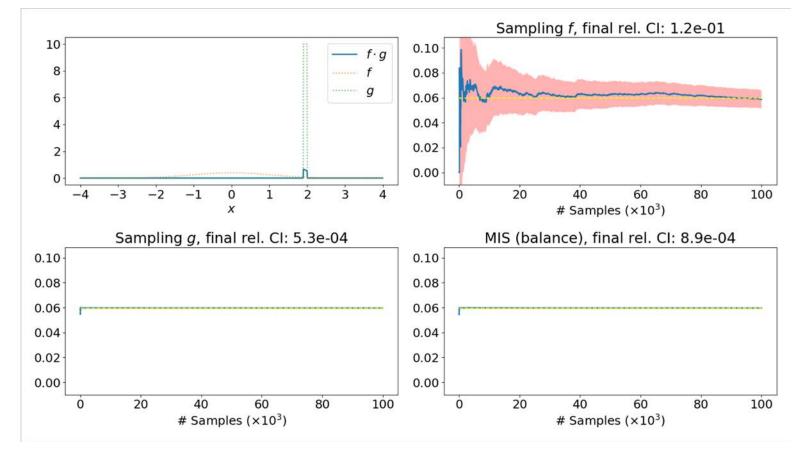
$$I = \int_{-\infty}^{\infty} \underbrace{\frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{x^2}{2\sigma^2}\right)}_{=:f(x|\sigma)} \underbrace{\frac{\mathbbm{I}\left[x \in [a,b)\right]}{b-a}}_{=:g(x|a,b)} \mathrm{d}x$$

with two probability densities $p_1 = f$, $p_2 = g$

- *f*: normal distribution with mean 0 and variance σ^2
- g: uniform distribution between a and b

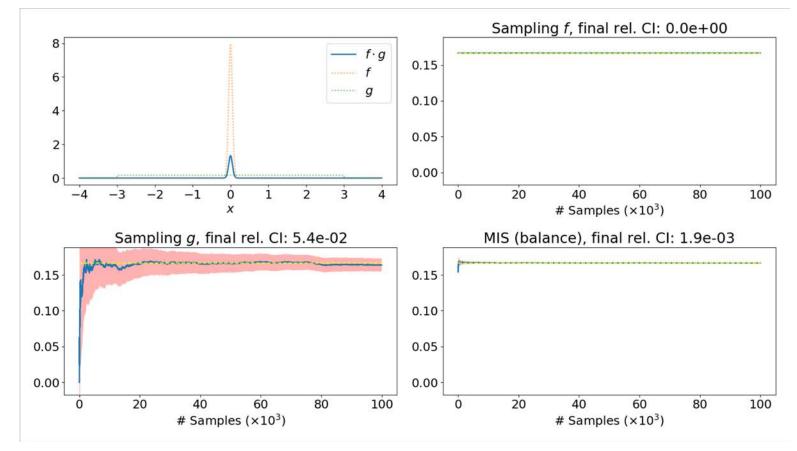
Example: MIS

• σ = 1; a = 1.9, b = 2.0



Example: MIS

• σ = 0.05; a = -3.0, b = 3.0

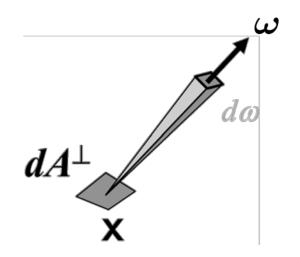


The Rendering Equation

GAMES Webinar: Rendering Tutorial 2

Radiance

- Radiant energy at *x* in direction *ω*:
 - A 5D function $L({m x},{m \omega})$: Power
 - per projected surface area
 - per solid angle

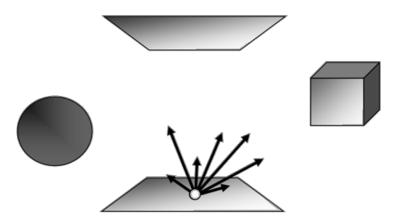


Light Transport

- Goal
 - Describe steady-state radiance distribution in virtual scenes
- Assumptions
 - Geometric optics
 - Achieves steady state instantaneously

Radiance at Equilibrium

- Radiance values at all points in the scene and in all directions expresses the equilibrium
 - 5D "Light-field"
- We only consider radiance on surfaces (4D)
 - Assuming no volumetric scattering or absorption



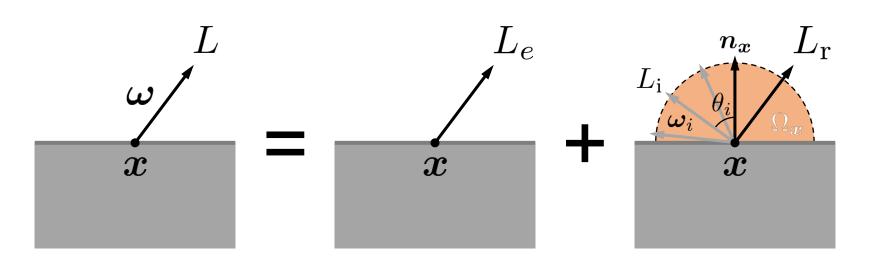
Rendering Equation (RE)

- RE describes the distribution of radiance at equilibrium
- RE involves:
 - Scene geometry
 - Light source info.

(Known)

- Surface reflectance info.
- Radiance values at all surface points in all directions (Unknown)

Rendering Equation (RE)

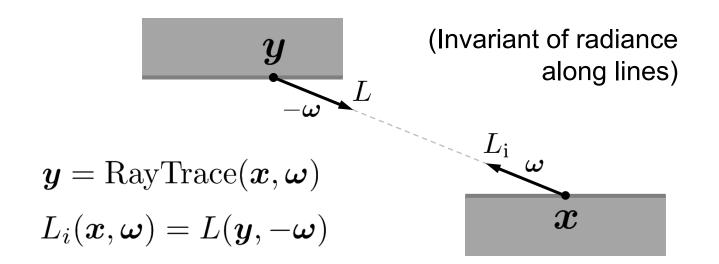


$$L(\boldsymbol{x}, \boldsymbol{\omega}) = L_e(\boldsymbol{x}, \boldsymbol{\omega}) + L_r(\boldsymbol{x}, \boldsymbol{\omega})$$
$$\int_{\Omega_{\boldsymbol{x}}} L_i(\boldsymbol{x}, \boldsymbol{\omega}_i) f_r(\boldsymbol{x}, \boldsymbol{\omega}_i \leftrightarrow \boldsymbol{\omega}) \langle \underbrace{\boldsymbol{n}_{\boldsymbol{x}}, \boldsymbol{\omega}_i}_{= \cos \theta_i} \rangle \mathrm{d}\boldsymbol{\omega}_i$$

Rendering Equation

$$\begin{bmatrix}
L(x,\omega) &= L_e(x,\omega) + \\
\int_{\Omega_x} \frac{L_i(x,\omega_i)}{\ln coming} f_r(x,\omega_i \leftrightarrow \omega) \langle n_x,\omega_i \rangle d\omega_i$$
Incoming radiance

Rendering Equation



$$\left(egin{array}{c} L(oldsymbol{x},oldsymbol{\omega}) = L_e(oldsymbol{x},oldsymbol{\omega}) + \int_{\Omega_{oldsymbol{x}}} L(oldsymbol{y},-oldsymbol{\omega}_i) f_r(oldsymbol{x},oldsymbol{\omega}_i oldsymbol{\omega}) \langle oldsymbol{n}_{oldsymbol{x}},oldsymbol{\omega}_i
angle
ight)$$

Monte Carlo Path Tracing

GAMES Webinar: Rendering Tutorial 2

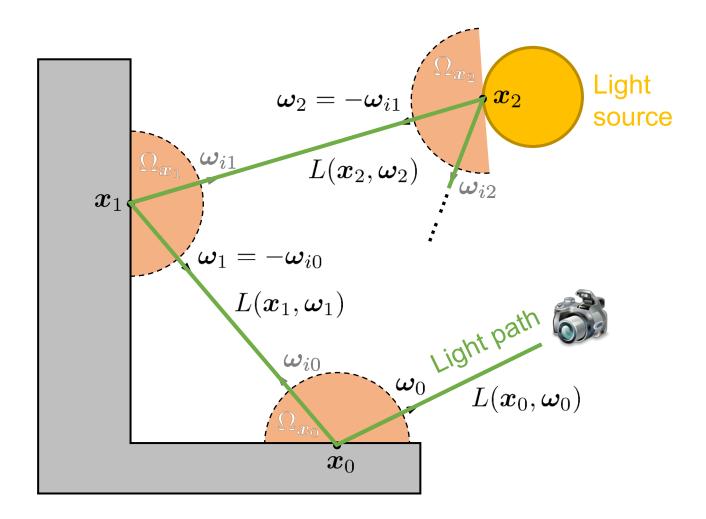
Path Tracing (Version 0)

$$L(\boldsymbol{x}, \boldsymbol{\omega}) = L_e(\boldsymbol{x}, \boldsymbol{\omega}) + L_r(\boldsymbol{x}, \boldsymbol{\omega})$$
$$L_r(\boldsymbol{x}, \boldsymbol{\omega}) = \int_{\Omega_{\boldsymbol{x}}} L(\boldsymbol{y}, -\boldsymbol{\omega}_i) f_r(\boldsymbol{x}, \boldsymbol{\omega}_i \leftrightarrow \boldsymbol{\omega}) \langle \boldsymbol{n}_{\boldsymbol{x}}, \boldsymbol{\omega}_i \rangle d\boldsymbol{\omega}_i$$

- Estimating *L*_r using MC integration:
 - Draw ω_i uniformly at random
 - $p(\boldsymbol{\omega}_i) = 1/(2\pi)$

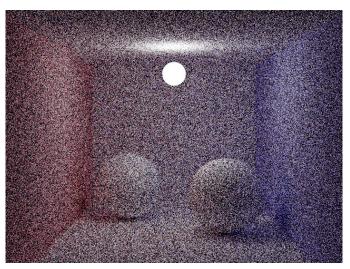
$$\langle L_r(\boldsymbol{x}, \boldsymbol{\omega}) \rangle = \frac{L(\boldsymbol{y}, -\boldsymbol{\omega}_i) f_r(\boldsymbol{x}, \boldsymbol{\omega}_i \leftrightarrow \boldsymbol{\omega}) \langle \boldsymbol{n}_{\boldsymbol{x}}, \boldsymbol{\omega}_i \rangle}{p(\boldsymbol{\omega}_i)}$$
$$= 2\pi L(\boldsymbol{y}, -\boldsymbol{\omega}_i) f_r(\boldsymbol{x}, \boldsymbol{\omega}_i \leftrightarrow \boldsymbol{\omega}) \langle \boldsymbol{n}_{\boldsymbol{x}}, \boldsymbol{\omega}_i \rangle$$

Path Tracing (Version 0)



Challenge

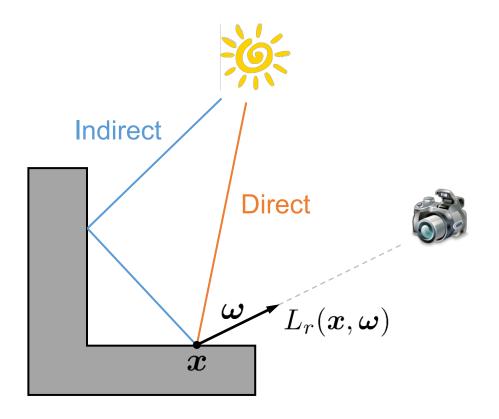
- Small light source leads to high noise
 - Because the probability for a "light path" to hit the light source is small



64 samples per pixel

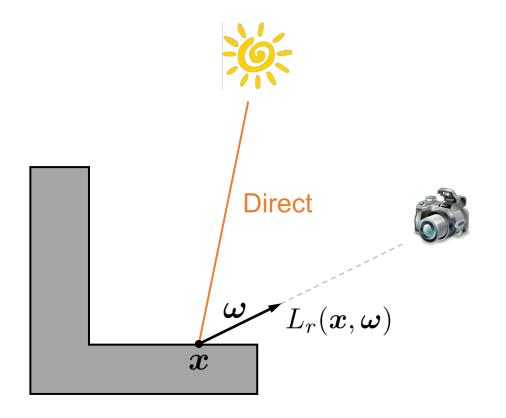
Idea: Separating Direct & Indirect

$$L_r(\boldsymbol{x}, \boldsymbol{\omega}) = L_r^{ ext{direct}}(\boldsymbol{x}, \boldsymbol{\omega}) + L_r^{ ext{indirect}}(\boldsymbol{x}, \boldsymbol{\omega})$$

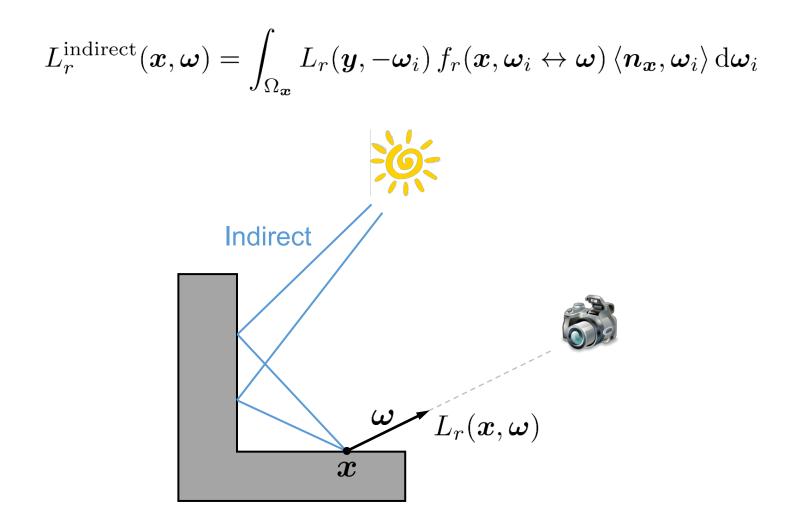


Direct Illumination

$$L_r^{\text{direct}}(\boldsymbol{x}, \boldsymbol{\omega}) = \int_{\Omega_{\boldsymbol{x}}} L_e(\boldsymbol{y}, -\boldsymbol{\omega}_i) f_r(\boldsymbol{x}, \boldsymbol{\omega}_i \leftrightarrow \boldsymbol{\omega}) \langle \boldsymbol{n}_{\boldsymbol{x}}, \boldsymbol{\omega}_i \rangle \, \mathrm{d}\boldsymbol{\omega}_i$$



Indirect Illumination



Summary: Direct + Indirect

$$L = L_{e} + L_{r}$$

$$L_{r}(\boldsymbol{x}, \boldsymbol{\omega}) = \int_{\Omega_{\boldsymbol{x}}} L(\boldsymbol{y}, -\boldsymbol{\omega}_{i}) f_{r}(\boldsymbol{x}, \boldsymbol{\omega}_{i} \leftrightarrow \boldsymbol{\omega}) \langle \boldsymbol{n}_{\boldsymbol{x}}, \boldsymbol{\omega}_{i} \rangle d\boldsymbol{\omega}_{i}$$

$$L_{r}^{\text{direct}}(\boldsymbol{x}, \boldsymbol{\omega}) = \int_{\Omega_{\boldsymbol{x}}} L_{e}(\boldsymbol{y}, -\boldsymbol{\omega}_{i}) f_{r}(\boldsymbol{x}, \boldsymbol{\omega}_{i} \leftrightarrow \boldsymbol{\omega}) \langle \boldsymbol{n}_{\boldsymbol{x}}, \boldsymbol{\omega}_{i} \rangle d\boldsymbol{\omega}_{i}$$

$$Non-recursive$$

$$L_{r}^{\text{indirect}}(\boldsymbol{x}, \boldsymbol{\omega}) = \int_{\Omega_{\boldsymbol{x}}} L_{r}(\boldsymbol{y}, -\boldsymbol{\omega}_{i}) f_{r}(\boldsymbol{x}, \boldsymbol{\omega}_{i} \leftrightarrow \boldsymbol{\omega}) \langle \boldsymbol{n}_{\boldsymbol{x}}, \boldsymbol{\omega}_{i} \rangle d\boldsymbol{\omega}_{i}$$
Recursion

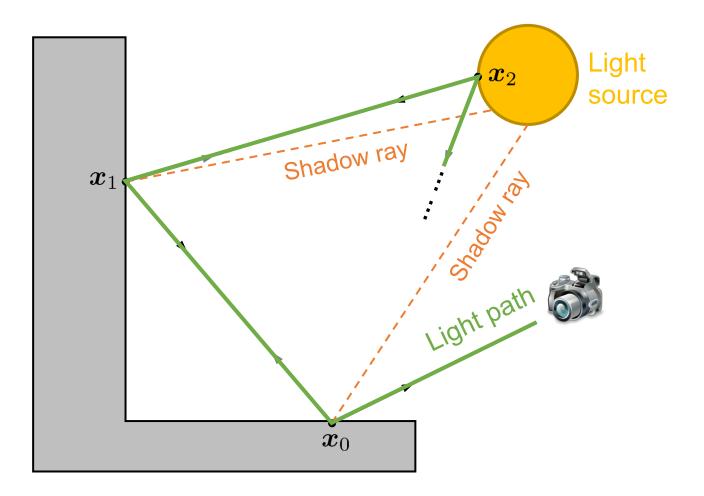
• This idea is usually called "next-event estimation"

Estimating Direct Illumination

- Idea: sampling the light source
- Solid angle integral area integral

$$\begin{split} L_r^{\text{direct}}(\boldsymbol{x}, \boldsymbol{\omega}) &= \int_{\Omega_{\boldsymbol{x}}} L_e(\boldsymbol{y}, -\boldsymbol{\omega}_i) \, f_r(\boldsymbol{x}, \boldsymbol{\omega}_i \leftrightarrow \boldsymbol{\omega}) \left\langle \boldsymbol{n}_{\boldsymbol{x}}, \boldsymbol{\omega}_i \right\rangle \mathrm{d}\boldsymbol{\omega}_i \\ &= \int_{A_e} L_e(\boldsymbol{y}, -\boldsymbol{\omega}_i) \, f_r(\boldsymbol{x}, \boldsymbol{\omega}_i \leftrightarrow \boldsymbol{\omega}) \, V(\boldsymbol{x}, \boldsymbol{y}) \, \frac{\langle \boldsymbol{n}_{\boldsymbol{x}}, \boldsymbol{\omega}_i \rangle \langle \boldsymbol{n}_{\boldsymbol{y}}, -\boldsymbol{\omega}_i \rangle}{\|\boldsymbol{x} - \boldsymbol{y}\|_2^2} \, \mathrm{d}\boldsymbol{y} \\ \end{split}$$

Path Tracing (with NEE)



Path Integral Formulation

GAMES Webinar: Rendering Tutorial 2

Path Integral Formulation (Preview)

• Goal: rewriting the measurement equation

$$I = \int_{\mathcal{M}} \int_{\Omega_{\boldsymbol{x}}} W_e(\boldsymbol{x}, \boldsymbol{\omega}) L_i(\boldsymbol{x}, \boldsymbol{\omega}) \langle \boldsymbol{n}_{\boldsymbol{x}}, \boldsymbol{\omega} \rangle \, \mathrm{d}\boldsymbol{\omega} \, \mathrm{d}\boldsymbol{x},$$

as an integral of the form

$$I = \int_{\Omega} f(\bar{x}) \,\mathrm{d}\mu(\bar{x}),$$

where \bar{x} denotes individual light paths for the form $(x_0, x_1, x_2, \dots, x_k)$

Benefits

- Express the measurement *I* as an integral instead of an integral equation
- Provide a unified framework for deriving advanced estimators of *I*

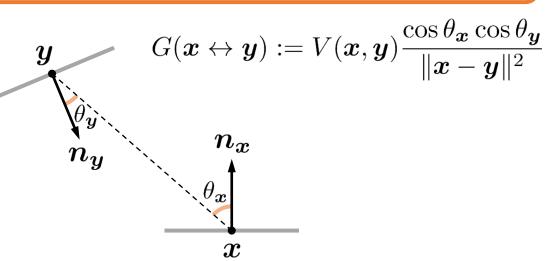
Recap: Change of Measure

• From *solid angle* to *area*:

Solid angle:
$$L_r^{\text{direct}}(\boldsymbol{x}, \boldsymbol{\omega}) = \int_{\Omega_{\boldsymbol{x}}} L_i^{\text{direct}}(\boldsymbol{x}, \boldsymbol{\omega}_i) f_r(\boldsymbol{x}, \boldsymbol{\omega}_i \to \boldsymbol{\omega}) \langle \boldsymbol{n}_{\boldsymbol{x}}, \boldsymbol{\omega}_i \rangle d\boldsymbol{\omega}_i$$

Area: $L_r^{\text{direct}}(\boldsymbol{x}, \boldsymbol{\omega}) = \int_A L_i^{\text{direct}}(\boldsymbol{x}, \boldsymbol{\omega}_i) f_r(\boldsymbol{x}, \boldsymbol{\omega}_i \to \boldsymbol{\omega}) G(\boldsymbol{x} \leftrightarrow \boldsymbol{y}) d\boldsymbol{y}$

We now apply this idea to the *RE* as well as the *measurement equation*



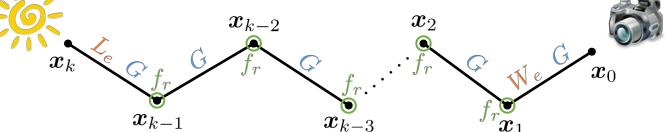
Path Integral Formulation of the RE

• By repeatedly expanding *L*, we get:

$$I = \int_{\Omega} f(\bar{x}) \,\mathrm{d}\mu(\bar{x}),$$

where for any $\bar{x} = (x_0, x_1, x_2, \dots, x_k)$:

$$f(\bar{x}) := L_e(\boldsymbol{x}_k \to \boldsymbol{x}_{k-1}) \left[\prod_{j=0}^{k-1} G(\boldsymbol{x}_{j+1} \leftrightarrow \boldsymbol{x}_j) \right] \left[\prod_{j=1}^{k-1} f_r(\boldsymbol{x}_{j+1} \to \boldsymbol{x}_j \to \boldsymbol{x}_{j-1}) \right] W_e(\boldsymbol{x}_1 \to \boldsymbol{x}_0)$$



Applying the Path Integral Formulation

• The path integral

$$I = \int_{\Omega} f(\bar{x}) \,\mathrm{d}\mu(\bar{x})$$

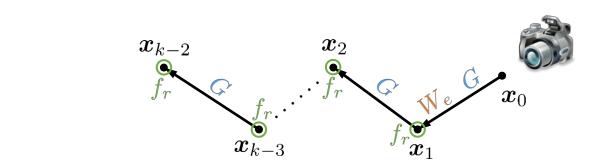
can be estimated via Monte Carlo integration framework:

$$\langle I \rangle = \frac{f(\bar{x})}{p(\bar{x})}$$

- What density *p* to use?
- How to draw a sample path \bar{x} from p?

Recap: Local Path Sampling

• Path tracing



- Without next-event estimation
 - One transport path at a time
- With next-event estimation
 - Multiple transport paths at a time

Advanced Methods

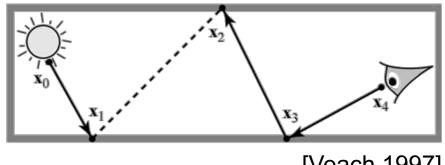
GAMES Webinar: Rendering Tutorial 2

Advanced Methods

- Bidirectional path tracing (BDPT)
- Metropolis light transport (MLT)

Bidirectional Path Tracing

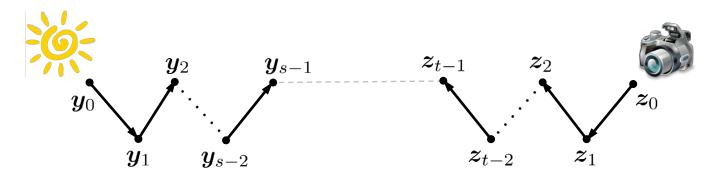
 Build light transport paths by connecting two sub-paths starting from the light source and the sensor, respectively



[Veach 1997]

 Use multiple importance sampling (MIS) to properly weight each path

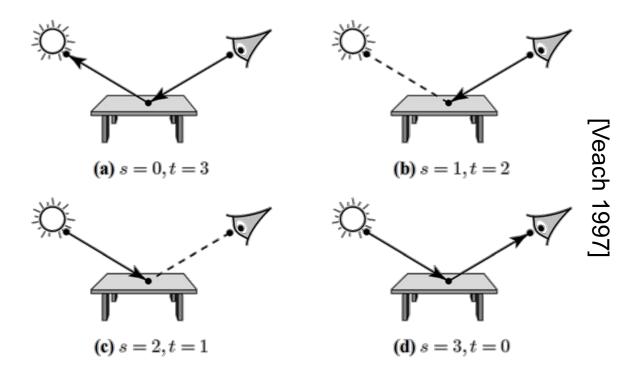
• For any $s, t \ge 0$, create light sub-path (y_0, \ldots, y_{s-1}) and sensor sub-path (z_0, \ldots, z_{t-1}) (using local path sampling)



• The full path $\bar{x}_{s,t}$ is obtained by *concatenating* these two pieces:

$$\bar{x}_{s,t} := (\boldsymbol{z}_0, \boldsymbol{z}_1, \dots, \boldsymbol{z}_{t-1}, \boldsymbol{y}_{s-1}, \dots, \boldsymbol{y}_1, \boldsymbol{y}_0)$$

- Remark: there is more than one sampling technique for each path length
 - (k + 1) techniques for paths with k vertices



- For each s and t, the construction of $\bar{x}_{s,t}$ gives a probability density $p_{s,t}(\bar{x}_{s,t})$
- Similar to the unidirectional case, $p_{s,t}(\bar{x}_{s,t})$ equals the product of densities of sampling both sub-paths

 $p_{s,t}(\bar{x}_{s,t}) = p((y_0, y_1, \dots, y_{s-1})) \ p((z_0, z_1, \dots, z_{t-1}))$

 Using multiple importance sampling, we can combine all these path sampling schemes, resulting in:

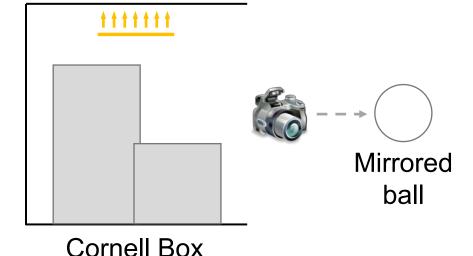
$$\langle I \rangle_{\text{MIS}} = \sum_{s \ge 0} \sum_{t \ge 0} w_{s,t}(\bar{x}_{s,t}) \frac{f(\bar{x}_{s,t})}{p_{s,t}(\bar{x}_{s,t})}$$

where $w_{s,t}$ is the weighting function

• Balance heuristic

Example: Modified Cornell Box

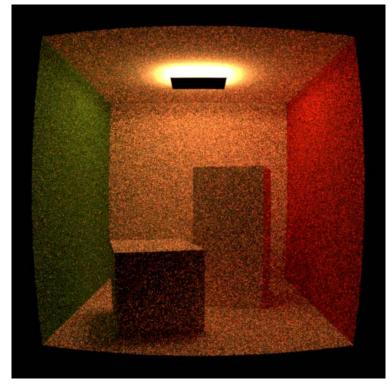
- Area light facing up
 - The scene is lit largely indirectly



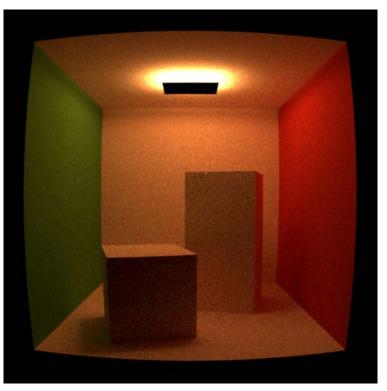
- Camera facing a mirrored ball
 - The scene is observed indirectly
- Difficult to render with unidirectional path tracing

Example: Modified Cornell Box

(Rendered in equal-time)



Path tracing



Bidirectional path tracing

Metropolis light transport (MLT)

- A Markov Chain Monte Carlo (MCMC) framework implementing the Metropolis-Hasting method first proposed by Veach and Guibas in 1997
- Capable of efficiently constructing "difficult" transport paths
- Lots of ongoing research along this direction

Metropolis-Hasting Method

- A Markov-Chain Monte Carlo technique
- Given a non-negative function f, generate a chain of (correlated) samples X_1, X_2, X_3, \ldots that follow a probability density proportional to f
- Main advantage: *f* does not have to be a PDF (i.e., unnormalized)

Metropolis-Hasting Method

- Input
 - Non-negative function *f*
 - Probability density $g(y \rightarrow x)$ suggesting a candidate for the next sample value *x*, given the previous sample value *y*
- The algorithm: given current sample X_i
 - 1. Sample X' from $g(X_i \rightarrow X')$

2. Let
$$a = \frac{f(X')}{f(X_i)} \frac{g(X' \to X_i)}{g(X_i \to X')}$$

- 3. Set X_{i+1} to X' with prob. *a*; otherwise, set X_{i+1} to X_i
- Start with arbitrary initial state X_0

Path Mutations

- The key step of the MLT
- Given a transport path \bar{x} , we need to define a transition probability $g(\bar{x} \rightarrow \bar{y})$ to allow sampling mutated paths \bar{y} based on \bar{x}
 - Given this transition density, the acceptance probability is then given by

$$a(\bar{x} \to \bar{y}) = \min\left\{1, \ \frac{f(\bar{y})}{f(\bar{x})} \frac{g(\bar{y} \to \bar{x})}{g(\bar{x} \to \bar{y})}\right\}$$

Desirable Mutation Properties

- High acceptance probability
 - $a(\bar{x} \rightarrow \bar{y})$ should be large with high probability
- Large changes to the path
- Ergodicity (never stuck in some-region of the path space)
 - $g(\bar{x} \to \bar{y})$ should be non-zero for all \bar{x} , \bar{y} with $f(\bar{x}) > 0$, $f(\bar{y}) > 0$
- Low cost

Path Mutation Strategies

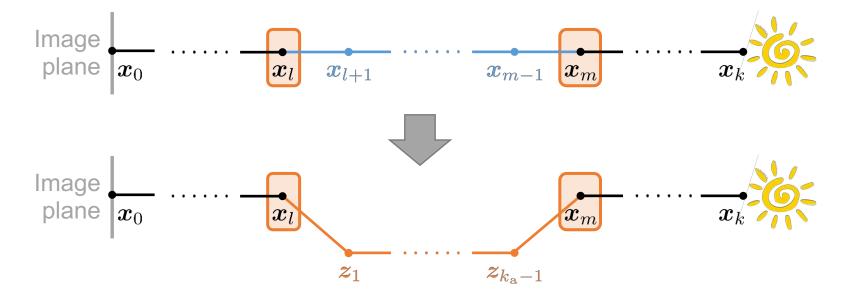
- [Veach & Guibas 1997]
 - Bidirectional mutation
 - Path perturbations
 - Lens sub-path mutation
- [Jakob & Marschner 2012]
 - Manifold exploration
- [Li et al. 2015]
 - Hamiltonian Monte Carlo

. . .

Bidirectional Path Mutations

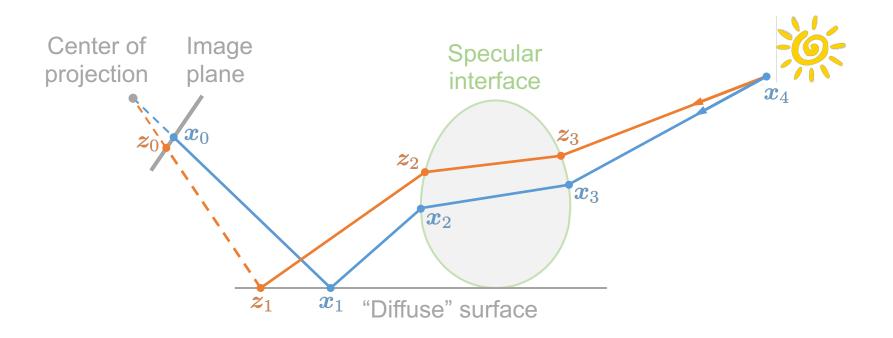
- Basic idea
 - Given a path $\bar{x} = (x_0, \dots, x_k)$, pick *I*, *m* and replace the vertices x_{l+1}, \dots, x_{m-1} with z_1, \dots, z_{k_n-1}

• I and m satisfies $-1 \le l < m \le k+1$

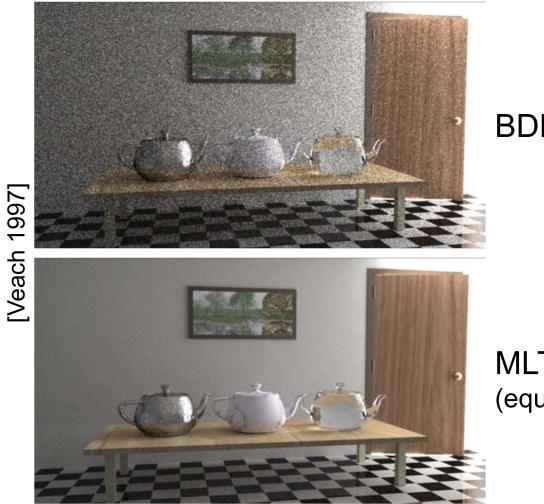


Path Perturbation

- Slightly modify the direction $x_m \rightarrow x_{m-1}$ (at random)
- Trace a ray from x_m with this new direction to form the new sub-path



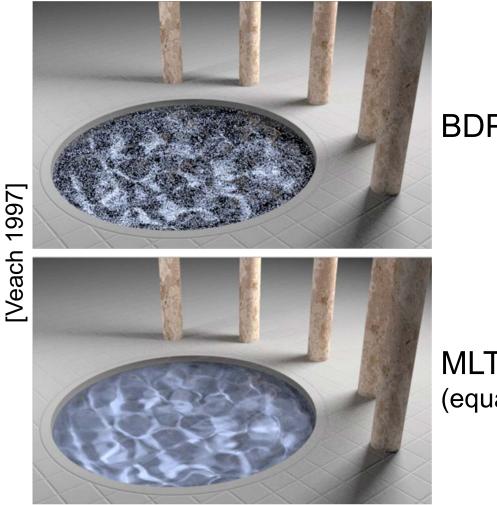
Results



BDPT

MLT (equal-time)

Results



BDPT

MLT (equal-time)

Summary

- Physics-based rendering is a rich field
- Things we have covered
 - Light transport model
 - Rendering equation (reflection and refraction)
 - Monte Carlo solutions
 - Path tracing
 - Bidirectional path tracing
 - Metropolis light transport

Topics we have not covered

- Radiative transfer (sub-surface scattering)
- Unbiased methods
 - Primary sample space & multiplexed MLT
 - Gradient-domain PT/MLT
- Biased methods
 - Photon mapping
 - Lightcuts
 - Monte Carlo denoising
 - Diffusion approximations

• . . .