Rendering Tutorial 4：

Precomputed Radiance Transfer （预计算辐射传输）

徐昆
清华大学
2018－10－11

Rendering under environment lighting

O i/0: incoming/view directions
O Brute-force computation

- Resolution: 6*64*64
- Needs 6*64*64 times for each point!

Precomputed Radiance Transfer (PRT)

O Introduced by Sloan in SIGGRAPH 2002

- Precomputed Radiance Transfer for Real-Time Rendering in Dynamic, Low-Frequency Lighting Environments [Sloan 02]

Basic idea of PRT [Sloan 02]

$$
L(\mathbf{0})=\int_{\Omega_{\text {lighting }}} L(\mathbf{i}) V(\mathbf{i}) \rho(\mathbf{i}, \mathbf{0}) \max (0, \boldsymbol{n} \cdot \mathbf{i}) \mathrm{di}
$$

O Approximate lighting using basis functions

- $L(\mathbf{i}) \approx \sum l_{i} B_{i}(\mathbf{i})$

O Precomputation stage

- compute light transport, and project to basis function space

O Runtime stage

- dot product (diffuse) or matrix-vector multiplication (glossy)

Diffuse Case

$$
L(\mathbf{0})=\rho \int_{\Omega} L(\mathbf{i}) V(\mathbf{i}) \max (0, \boldsymbol{n} \cdot \mathbf{i}) \mathrm{di}
$$

lighting basis
coefficient function

$$
\begin{aligned}
& L(\mathbf{0}) \approx \rho \sum l_{i} \int_{\Omega} \mathrm{B}_{i}(\mathbf{i}) V(\mathbf{i}) \max (0, \boldsymbol{n} \cdot \mathbf{i}) \mathrm{di} \\
& L(\mathbf{0}) \approx \rho \sum l_{i} T_{i}
\end{aligned}
$$

O Reduce rendering computation to dot product

Basis functions $B(\mathbf{i})$

$$
1=0 \mathrm{~m}=0
$$

O Spherical Harmonics (SH)
o SH have nice properties:

- orthonormal

$$
\mathrm{l}=1 \mathrm{~m}=-1
$$

- simple projection/reconstruction
- rotationally invariant (no aliasing)
- simple rotation
$1=1 \mathrm{~m}=0$
- simple convolution
- few basis functions: low freqs

$$
\mathrm{l}=3 \mathrm{~m}=-1
$$

$$
1=3 \mathrm{~m}=2
$$

$\mathrm{l}=1 \mathrm{~m}=1$

Basis functions $B(\mathbf{i})$

O Spherical Harmonics (SH)
O Light Approximation Examples

Basis functions $B(\mathbf{i})$

o SH is orthonormal, we have:

$$
\begin{aligned}
& \int_{\Omega} B_{i}(\mathbf{i}) \cdot B_{j}(\mathbf{i}) \mathrm{d} \mathbf{i}=1 \quad(\mathbf{i}=\mathbf{j}) \\
& \int_{\Omega} B_{i}(\mathbf{i}) \cdot B_{j}(\mathbf{i}) \mathrm{d} \mathbf{i}=\mathbf{0} \quad(\mathbf{i} \neq \mathbf{j})
\end{aligned}
$$

Basis functions $B(\mathbf{i})$

Original space
SH space

lighting

lighting coefficients
O Projection to SH space $\quad l_{i}=\int_{\Omega} L(\mathbf{i}) \cdot B_{i}(\mathbf{i}) \mathrm{di}$

O Reconstruction
$L(\mathbf{i}) \approx \sum l_{i} B_{i}(\mathbf{i})$

Precomputation

light transport $T_{i} \approx \int_{\Omega} \mathrm{B}_{i}(\mathbf{i}) V(\mathbf{i}) \max (0, \boldsymbol{n} \cdot \mathbf{i}) \mathrm{di}$
○ No shadow/ shadow/ inter-reflection

Run-time Rendering

$$
L(\mathbf{0}) \approx \rho \sum l_{i} T_{i}
$$

O Rendering at each point is reduced to a dot product

- First, project the lighting to the basis to obtain l_{i}
- Or, rotate the lighting instead of re-projection
- Then, compute the dot product
o Real-time: easily implemented in shader

Diffuse Rendering Results

No Shadows

Shadows

Shadows+Inter

Glossy Case

$$
\begin{aligned}
& L(\mathbf{0})=\int_{\Omega} L(\mathbf{i}) V(\mathbf{i}) \rho(\mathbf{i}, \mathbf{0}) \max (0, \boldsymbol{n} \cdot \mathbf{i}) \mathrm{di} \\
& L(\mathbf{0}) \approx \sum l_{i} T_{i}(\mathbf{0}) \\
& L(\mathbf{0}) \approx \sum\left(\sum l_{i} t_{i j}\right) B_{j}(\mathbf{0}) \approx \sum t_{i j} B_{j}(\mathbf{0}) \\
& \text { transport } \\
& \text { matrix }
\end{aligned}
$$

transport matrix

O Rendering: vector-matrix multiplication

Time Complexity

O \#SH Basis : 9/16/25
O Diffuse Rendering

- At each point: dot-product of size 16

O Glossy Rendering

- At each point: vector(16) * matrix (16*16)

Glossy Rendering Results

No Shadows/Inter

Shadows

Shadows+Inter

- Glossy object, 50K mesh
- Runs at 3.6 fps on 2.2Ghz P4, ATI Radeon 8500

Interreflections and Caustics interreflections

none

1 bounce

2 bounces

Transport Paths

caustics

Results

Acquired Environments

Geometry: 50k vertex mesh

Summary of [Sloan 02]

O Approximate Lighting and light transport using basis functions (SH)

- Lighting -> lighting coefficients
- light transport -> coefficients / matrices

O Precompute and store light transport
O Rendering reduced to:

- Diffuse: dot product
- Glossy: vector matrix multiplication

Limitations [Sloan 02]

O Low-frequency

- Due to the nature of SH

O Dynamic lighting, but static scene/material

- Changing scene/material invalidates precomputed light transport
o Big precomputation data

Follow up works

O More basis functions
O dot product => triple products
O Static scene => dynamic scene
O Fix material => dynamic material
O Other effects: translucent, hair, ...
O Precomputation => analytic computation
O ...

More basis functions

O Spherical Harmonics (SH)
O Wavelet
O Zonal Harmonics
O Spherical Gaussian (SG)
O Piecewise Constant

Wavelet [Ng 03]

o 2D Haar wavelet

O Projection:

- Wavelet Transformation
- Retain a small number of non-zero coefficients
o A non-linear approximation

o All-frequency representation

low frequency vs all frequency

 Teapot in Grace Cathedral

Low frequency (SH)
All frequency (Wavelet)

Relighting as Matrix-Vector Multiply

$$
=\left[\begin{array}{cccc}
T_{11} & T_{12} & \mathrm{~L} & T_{1 M} \\
T_{21} & T_{22} & \mathrm{~L} & T_{2 M} \\
T_{31} & T_{32} & \mathrm{~L} & T_{3 M} \\
\mathrm{M} & \mathrm{M} & \mathrm{O} & \mathrm{M} \\
T_{N 1} & T_{N 2} & \mathrm{~L} & T_{N M}
\end{array}\right]\left[\begin{array}{c}
L_{1} \\
L_{2} \\
\mathrm{M} \\
L_{N}
\end{array}\right]
$$

Relighting as Matrix-Vector Multiply

Output Image (Pixel Vector)

- Input Lighting
(Cubemap Vector)

Transport Matrix $\left.\begin{array}{lllll}T_{N 1} & T_{N 2} & \mathrm{~L} & T_{N M}\end{array}\right]$

Non-linear Wavelet Light Approximation

Wavelet Transform

Non-linear Wavelet Light
Approximation

Non-linear Approximation

Retain 0.1\% - 1\% terms

Matrix Row Wavelet Encoding

$$
\left[\begin{array}{cccccc}
T_{11} & T_{12} & T_{13} & T_{14} & \mathrm{~L} & T_{1 M} \\
T_{21} & T_{22} & T_{23} & T_{24} & \mathrm{~L} & T_{2 M} \\
T_{31} & T_{32} & T_{24} & T_{34} & \mathrm{~L} & T_{3 M} \\
T_{41} & T_{42} & T_{43} & T_{44} & \mathrm{~L} & T_{4 M} \\
T_{51} & T_{52} & T_{53} & T_{54} & \mathrm{~L} & T_{5 M} \\
T_{61} & T_{62} & T_{63} & T_{64} & \mathrm{~L} & T_{6 M} \\
\mathrm{M} & \mathrm{M} & \mathrm{M} & \mathrm{M} & \mathrm{O} & T_{7 M} \\
T_{N 1} & T_{N 2} & T_{N 3} & T_{N 4} & \mathrm{~L} & T_{N M}
\end{array}\right]
$$

Matrix Row Wavelet Encoding

$\left[\begin{array}{llllll}T_{11} & T_{12} & T_{13} & T_{14} & \mathrm{~L} & T_{1 M} \\ T_{21} & T_{22} & T_{23} & T_{24} & \mathrm{~L} & T_{2 M} \\ T_{31} & T_{32} & T_{24} & T_{34} & \mathrm{~L} & T_{3 M} \\ T_{41} & T_{42} & T_{43} & T_{44} & \mathrm{~L} & T_{4 M} \\ T_{51} & T_{52} & T_{53} & T_{54} & \mathrm{~L} & T_{5 M} \\ T_{61} & T_{62} & T_{63} & T_{64} & \mathrm{~L} & T_{6 M} \\ \mathrm{M} & \mathrm{M} & \mathrm{M} & \mathrm{M} & \mathrm{O} & T_{7 M} \\ T_{N 1} & T_{N 2} & T_{N 3} & T_{N 4} & \mathrm{~L} & T_{N M}\end{array}\right]$

Extract Row

Matrix Row Wavelet Encoding

$\left[\begin{array}{llllll}T_{11} & T_{12} & T_{13} & T_{14} & \mathrm{~L} & T_{1 M} \\ T_{21} & T_{22} & T_{23} & T_{24} & \mathrm{~L} & T_{2 M} \\ T_{31} & T_{32} & T_{24} & T_{34} & \mathrm{~L} & T_{3 M} \\ T_{41} & T_{42} & T_{43} & T_{44} & \mathrm{~L} & T_{4 M} \\ T_{51} & T_{52} & T_{53} & T_{54} & \mathrm{~L} & T_{5 M} \\ T_{61} & T_{62} & T_{63} & T_{64} & \mathrm{~L} & T_{6 M} \\ \mathrm{M} & \mathrm{M} & \mathrm{M} & \mathrm{M} & \mathrm{O} & T_{7 M} \\ T_{N 1} & T_{N 2} & T_{N 3} & T_{N 4} & \mathrm{~L} & T_{N M}\end{array}\right]$

Wavelet Transform

Matrix Row Wavelet Encoding

$\left[\begin{array}{cccccc}T_{11} & T_{12} & T_{13} & T_{14} & \mathrm{~L} & T_{1 M} \\ T_{21} & T_{22} & T_{23} & T_{24} & \mathrm{~L} & T_{2 M} \\ T_{31} & T_{32} & T_{24} & T_{34} & \mathrm{~L} & T_{3 M} \\ T_{41} & T_{42} & T_{43} & T_{44} & \mathrm{~L} & T_{4 M} \\ T_{51} & T_{52} & T_{53} & T_{54} & \mathrm{~L} & T_{5 M} \\ T_{61} & T_{62} & T_{63} & T_{64} & \mathrm{~L} & T_{6 M} \\ \mathrm{M} & \mathrm{M} & \mathrm{M} & \mathrm{M} & \mathrm{O} & T_{7 M} \\ T_{N 1} & T_{N 2} & T_{N 3} & T_{N 4} & \mathrm{~L} & T_{N M}\end{array}\right]$

Wavelet Transform

Matrix Row Wavelet Encoding

$\left[\begin{array}{llllll}T_{11} & T_{12} & T_{13} & T_{14} & \mathrm{~L} & T_{1 M} \\ T_{21} & T_{22} & T_{23} & T_{24} & \mathrm{~L} & T_{2 M} \\ T_{31} & T_{32} & T_{24} & T_{34} & \mathrm{~L} & T_{3 M} \\ T_{41} & T_{42} & T_{43} & T_{44} & \mathrm{~L} & T_{4 M} \\ T_{51} & T_{52} & T_{53} & T_{54} & \mathrm{~L} & T_{5 M} \\ T_{61} & T_{62} & T_{63} & T_{64} & \mathrm{~L} & T_{6 M} \\ \mathrm{M} & \mathrm{M} & \mathrm{M} & \mathrm{M} & \mathrm{O} & T_{7 M} \\ T_{N 1} & T_{N 2} & T_{N 3} & T_{N 4} & \mathrm{~L} & T_{N M}\end{array}\right]$

Wavelet Transform

Matrix Row Wavelet Encoding

$\left[\begin{array}{cccccc}T_{11} & T_{12} & T_{13} & T_{14} & \mathrm{~L} & T_{1 M} \\ T_{21} & T_{22} & T_{23} & T_{24} & \mathrm{~L} & T_{2 M} \\ T_{31} & T_{32} & T_{24} & T_{34} & \mathrm{~L} & T_{3 M} \\ T_{41} & T_{42} & T_{43} & T_{44} & \mathrm{~L} & T_{4 M} \\ T_{51} & T_{52} & T_{53} & T_{54} & \mathrm{~L} & T_{5 M} \\ T_{61} & T_{62} & T_{63} & T_{64} & \mathrm{~L} & T_{6 M} \\ \mathrm{M} & \mathrm{M} & \mathrm{M} & \mathrm{M} & \mathrm{O} & T_{7 M} \\ T_{N 1} & T_{N 2} & T_{N 3} & T_{N 4} & \mathrm{~L} & T_{N M}\end{array}\right]$

Wavelet Transform

Matrix Row Wavelet Encoding

$\left[\begin{array}{cccccc}T_{11}^{\prime} & 0 & 0 & T_{14}{ }^{\prime} & \mathrm{L} & 0 \\ T_{21} & T_{22} & T_{23} & T_{24} & \mathrm{~L} & T_{2 M} \\ T_{31} & T_{32} & T_{24} & T_{34} & \mathrm{~L} & T_{3 M} \\ T_{41} & T_{42} & T_{43} & T_{44} & \mathrm{~L} & T_{4 M} \\ T_{51} & T_{52} & T_{53} & T_{54} & \mathrm{~L} & T_{5 M} \\ T_{61} & T_{62} & T_{63} & T_{64} & \mathrm{~L} & T_{6 M} \\ \mathrm{M} & \mathrm{M} & \mathrm{M} & \mathrm{M} & \mathrm{O} & T_{7 M} \\ T_{N 1} & T_{N 2} & T_{N 3} & T_{N 4} & \mathrm{~L} & T_{N M}\end{array}\right]$

Store Back in Matrix

Matrix Row Wavelet Encoding

$\left[\begin{array}{cccccc}T_{11}{ }^{\prime} & 0 & 0 & T_{14}{ }^{\prime} & \mathrm{L} & 0 \\ T_{21} & T_{22} & T_{23} & T_{24} & \mathrm{~L} & T_{2 M} \\ T_{31} & T_{32} & T_{24} & T_{34} & \mathrm{~L} & T_{3 M} \\ T_{41} & T_{42} & T_{43} & T_{44} & \mathrm{~L} & T_{4 M} \\ T_{51} & T_{52} & T_{53} & T_{54} & \mathrm{~L} & T_{5 M} \\ T_{61} & T_{62} & T_{63} & T_{64} & \mathrm{~L} & T_{6 M} \\ \mathrm{M} & \mathrm{M} & \mathrm{M} & \mathrm{M} & \mathrm{O} & T_{7 M} \\ T_{N 1} & T_{N 2} & T_{N 3} & T_{N 4} & \mathrm{~L} & T_{N M}\end{array}\right]$

Only 3\% - 30\% are non-zero

Why Non-linear Approximation?

O Linear

- Use a fixed set of approximating functions
- Precomputed radiance transfer uses 25-100 of the lowest frequency spherical harmonics

O Non-linear

- Use a dynamic set of approximating functions (depends on each frame's lighting)
- In our case: choose 10 's - 100's from a basis of 24,576 wavelets

Overall Rendering Algorithm

O Pre-compute (per scene)

- Compute matrix in pixel basis
- Wavelet transform rows
- Quantize, store

O Interactive Relighting (each frame)

- Wavelet transform lighting
- Prioritize and retain N wavelet coefficients
- Perform sparse-matrix vector multiplication

Output Image Comparison

Limitation

O Wavelet: not rotational invariant

- Re-projection at each frame
- Results in flicking

O Only support dot-product operator

- Limited to diffuse or fix-view glossy

Results

Zonal Harmonics [Sloan 05]

O circularly symmetric functions
O Subset of SH basis $(\mathrm{m}=0)$

O Low-frequency
O Rotational invariant
O Much more faster in rotation than SH

Spherical Gaussian (SG) [Tsai 06]

O SGs (or Spherical Radial Basis Functions, SRBFs)

$$
G(\mathbf{v} ; \mathbf{p}, \lambda)=e^{\lambda(\mathbf{v} \cdot \mathbf{p}-1)}
$$

center bandwidth

varying center

Spherical Gaussian (SG) [Tsai 06]

O SGs (or Spherical Radial Basis Functions, SRBFs)

$$
G(\mathbf{v} ; \mathbf{p}, \lambda)=e^{\lambda(\mathbf{v} \cdot \mathbf{p}-1)}
$$

center bandwidth

increasing bandwidth

Mathematical Properties of SGs

O Closed-form integral

- The integral of an SG is closed-form

$$
\int_{\Omega} G(\mathbf{v} ; \mathbf{p}, \lambda) \mathrm{d} \mathbf{v}=\frac{2 \pi}{\lambda}\left(1-e^{-2 \lambda}\right)
$$

Mathematical Properties of SGs

O Closed under multiplication

- The product of two SGs is also an SG

$$
\mathrm{G}\left(\mathbf{v} ; \mathbf{p}_{1}, \lambda_{1}\right) \cdot \mathrm{G}\left(\mathbf{v} ; \mathbf{p}_{2}, \lambda_{2}\right)=c \mathrm{G}\left(\mathbf{v} ; \frac{\lambda_{1} \mathbf{p}_{1}+\lambda_{1} \mathbf{p}_{2}}{\left|\lambda_{1} \mathbf{p}_{1}+\lambda_{1} \mathbf{p}_{2}\right|},\left|\lambda_{1} \mathbf{p}_{1}+\lambda_{1} \mathbf{p}_{2}\right|\right)
$$

$G_{i s o}\left(\mathbf{v} ; \mathbf{p}_{1}, \lambda_{1}\right)$
$G_{i s o}\left(\mathbf{v} ; \mathbf{p}_{2}, \lambda_{2}\right)$
Product

Mathematical Properties of SGs

O Closed under convolution approximately

- The convolution of two SGs is still an SG

$$
\int_{\Omega} G\left(\mathbf{v} ; \mathbf{p}_{1}, \lambda_{1}\right) \cdot G\left(\mathbf{v} ; \mathbf{p}_{2}, \lambda_{2}\right) \mathrm{d} \mathbf{v} \approx c_{3} G\left(\mathbf{p}_{1} ; \mathbf{p}_{2}, \frac{\lambda_{1} \lambda_{2}}{\lambda_{1}+\lambda_{2}}\right)
$$

Summary of SGs

O Rotationally invariant

- Lighting, BRDFs demand rotation
o Capable of representing all-frequency signals
- All-frequency lighting/BRDFs
- Closed-form integral
- rendering is essentially integration [Kajiya 1986]
o Closed under multiplication
- multiplication of lighting, visibility and BRDFs
- Closed under convolution
- support for various applications

○ SGs are non-orthogonal!

Lighting Approximation

O non-linear process: iterative L-BFGS-B solver (slow)

$$
L(\mathbf{i}) \approx \sum l_{i} G\left(\mathbf{i} ; \mathbf{p}_{\mathrm{i}}, \lambda_{\mathrm{i}}\right)
$$

BRDF Factorization [Wang 03, Liu 03]

- Precompute the factorization

$$
\rho(\mathbf{i}, \mathbf{o}) \approx \sum_{\mathrm{m}} f_{\mathrm{m}}(\mathbf{i}) \cdot g_{\mathrm{m}}(\mathbf{0})
$$

Overall Rendering Algorithm

o Derivation: Factorizing BRDF

$$
\begin{aligned}
& L(\mathbf{0})=\int_{\Omega} L(\mathbf{i}) V(\mathbf{i}) \rho(\mathbf{i}, \mathbf{0}) \max (0, \boldsymbol{n} \cdot \mathbf{i}) \mathrm{di} \\
& L(\mathbf{0})=\int_{\Omega} L(\mathbf{i}) V(\mathbf{i})\left(\sum_{\mathrm{m}} f_{\mathrm{m}}(\mathbf{i}) \cdot g_{\mathrm{m}}(\mathbf{0})\right) \max (0, \boldsymbol{n} \cdot \mathbf{i}) \mathrm{di} \\
& L(\mathbf{0})=\sum_{\mathrm{m}} g_{\mathrm{m}}(\mathbf{0}) \int_{\Omega} L(\mathbf{i}) V(\mathbf{i}) f_{\mathrm{m}}(\mathbf{i}) \max (0, \boldsymbol{n} \cdot \mathbf{i})
\end{aligned} \overbrace{\downarrow}^{\operatorname{mi}} .
$$

Both represented using SGs

Overall Rendering Algorithm

o Derivation: projection to SGs

$$
\begin{aligned}
& L(\mathbf{o})=\sum_{\mathrm{m}} g_{\mathrm{m}}(\mathbf{0}) \int_{\Omega} L(\mathbf{i}) T(\mathbf{i}) \mathrm{di} \\
& \begin{array}{c}
L(\mathbf{i}) \approx \sum l_{i} G_{i}(\mathbf{i}) \\
\text { non-linear approx. }
\end{array} \\
& T(\mathbf{i}) \approx \sum t_{j} G_{j}(\mathbf{i}) \\
& \text { pre. scattered approx. } \\
& L(\mathbf{0})=\sum_{\mathrm{m}} g_{\mathrm{m}}(\mathbf{0}) \sum_{i, j} l_{i} t_{j} \underbrace{\int_{\Omega}(\mathbf{i}) G_{j}(\mathbf{i}) \mathrm{di}}_{\text {analytic solution }}
\end{aligned}
$$

- Timing: O(N*N*M), non-orthogonal

Results

Piecewise Constant [Xu 08]

- Spherical Piecewise Constant Basis Function (SPCBF)
- Split sphere into regions
- Each region is represented by a constant
O Property
- All-frequency
- Rotation-Invariant
- Multi-product
- Fast projection

Piecewise Constant [Xu 08]

O Light Projection

- Bottom-up optimization

Piecewise Constant [Xu 08]

O Projection of visibility and BRDFs

- BRDF
- using summed area table

- Visibility
- Using visibility distance table

Results

Comparison of Basis Functions

	SH	Wavelet	SG	SPCBF
Orthogonal	$\sqrt{ }$	$\sqrt{2}$	\times	$\sqrt{ }$
All-frequency	\times	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Rotation invariant	$\sqrt{ }$	\times	$\sqrt{ }$	$\sqrt{ }$
Multiple product	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ } ?$	$\sqrt{ }$
Compact Representation	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	X

Triple Product

o Original PRT: light * light transport

$$
L(\mathbf{0})=\int_{\Omega} L(\mathbf{i}) V(\mathbf{i}) \rho(\mathbf{i}, \mathbf{0}) \max (0, \boldsymbol{n} \cdot \mathbf{i}) \mathrm{di}
$$

Not Flexible

o Triple Product
lighting light transport

O ... Multiple Product

Wavelet Triple Product [Mg 04]

$$
\begin{aligned}
B & =\int_{S^{2}} L(\omega) V(\omega) \tilde{\rho}(\omega) d \omega \\
& =\int_{S^{2}}\left(\sum_{i} L_{i} \Psi_{i}(\omega)\right)\left(\sum_{j} V_{j} \Psi_{j}(\omega)\right)\left(\sum_{k} \tilde{\rho}_{k} \Psi_{k}(\omega)\right) d \omega \\
& =\sum_{i} \sum_{j} \sum_{k} L_{i} V_{j} \tilde{\rho}_{k} \int_{S^{2}} \Psi_{i}(\omega) \Psi_{j}(\omega) \Psi_{k}(\omega) d \omega \\
& =\sum_{i} \sum_{j} \sum_{k} L_{i} V_{j} \tilde{\rho}_{k} C_{i j k}
\end{aligned}
$$

Wavelet Triple Product [Ng 04]

$$
C_{i j k}=\int_{S^{2}} \Psi_{i}(\omega) \Psi_{j}(\omega) \Psi_{k}(\omega) d \omega
$$

Basis Choice	Number Non-Zero $C_{i j k}$
General (e.g. PCA)	$O\left(N^{3}\right)$
Pixels	$O(N)$
Fourier Series	$O\left(N^{2}\right)$
SH	$O\left(N^{5 / 2}\right)$
Haar Wavelets	$O(N \log N)$

Wavelet Triple Product [Ng 04]

SG Triple Product

O Analytic Computation

- The product of two SGs is also an SG

$$
\mathrm{G}\left(\mathbf{v} ; \mathbf{p}_{1}, \lambda_{1}\right) \cdot \mathrm{G}\left(\mathbf{v} ; \mathbf{p}_{2}, \lambda_{2}\right)=c \mathrm{G}\left(\mathbf{v} ; \frac{\lambda_{1} \mathbf{p}_{1}+\lambda_{1} \mathbf{p}_{2}}{\left|\lambda_{1} \mathbf{p}_{1}+\lambda_{1} \mathbf{p}_{2}\right|},\left|\lambda_{1} \mathbf{p}_{1}+\lambda_{1} \mathbf{p}_{2}\right|\right)
$$

Product
Could be easily extended to multiple product

SH Triple Product

o Precompute all triple products of SH basis

$$
C_{i j k}=\int_{\Omega} B_{i}(\mathbf{i}) B_{j}(\mathbf{i}) B_{k}(\mathbf{i}) \mathrm{di}
$$

O Compute the product Original space SH space of two functions directly in SH space:

$$
l t_{k}=\sum_{i, j} l_{i} t_{j} C_{i j k}
$$

$$
\begin{aligned}
L(\mathbf{i}) & \approx \sum l_{i} B_{i}(\mathbf{i}) \\
T(\mathbf{i}) & \approx \sum t_{j} B_{j}(\mathbf{i}) \\
L(\mathbf{i}) \cdot T(\mathbf{i}) & \approx \sum l t_{k} B_{k}(\mathbf{i})
\end{aligned}
$$

O Could be easily extended to multiple product

Shadow Field [Zhou05]

O PRT

- Handle only static scenes

O Shadow Field

- Handle moving light sources \& objects
- Rigid objects + dynamic scene configuration
- Capture SRF/OOF around
 lights/objects

Sampling \& Compression (Low Frequency)

Rendering: Products

Results

SH Exponential [Ren 06]

O Shadow Field

- Rigid objects
- Computation of SH multiple product is still costly

O SH Exponential

- Dynamic, deformation scene (objects)
- Derive Exp/Log operators in SH space
- Convert costly multiple product to summation in log space

Blocker Geometry Approximation

O Using sphere sets

O Dynamically update at each frame

Rendering Computation

O Multiple Product (a very big number)

Light * Self_Vis * Occlusion1 * Occlusion2 * * OcclusionN * BRDF ***

O Approach

$$
f_{1} * f_{2} * \cdots * f_{n}
$$

$$
\exp \left(\log f_{1}+\log f_{2}+\cdots+\log f_{n}\right)
$$

- Implement exp/log directly in SH space
- Much faster

Results

Dinosaur Demo

120k vertices (75k static, 45k dynamic)
500 spheres in blocker approximation
250 receiver clusters
12.6 Hz average frame rate

More Rendering Applications

O Translucent Rendering
O Hair Rendering
O BRDF Editing
O Translucent Editing
O Hair Editing

Translucent Rendering [Wang05]

O Extend PRT to handle translucent materials

$$
L\left(x_{0}, \mathbf{0}\right)=\int_{A} \int_{\Omega} L\left(x_{i}, \mathbf{i}\right) S\left(x_{i}, \mathbf{i} ; x_{0}, \mathbf{0}\right) \max (0, \boldsymbol{n} \cdot \mathbf{i}) \mathrm{di}
$$

O Precompute the transport for multiple scattering and single scattering separately

Results

O Dynamic environment lighting
o Fix: geometry + materials
O Real-time

Hair Rendering [Ren 10]

O Extend PRT to handle hair rendering

- Support environment lighting

- Single Scattering
- Self-shadowing
- Fiber scattering
- Transparency
- Multiple Scattering
- Natural Illumination

Single Scattering Computation

$$
\begin{aligned}
& L(\mathbf{0})= D \int_{\Omega} L(\mathbf{i}) T(\mathbf{i}) S(\mathbf{i}, \mathbf{o}) \\
& \text { self shadow } \max (0, \boldsymbol{n} \cdot \mathbf{i}) \mathrm{di} \\
&
\end{aligned}
$$

- Approximate $L(\mathbf{o})$ by N SGs
- Move T out from the integral
- small variation of T

$$
L(\mathbf{o})=D \sum_{j=1}^{N} L_{j} \tilde{T} \int_{\Omega} G_{j}(\mathbf{i}) S(\mathbf{i}, \mathbf{o}) \max (0, \boldsymbol{n} \cdot \mathbf{i}) \mathrm{d} \mathbf{i}
$$

Results

O Dynamic lighting, geometry
o Fix hair scattering parameters
O Interactive framerates

BRDF Editing [Ben-Artzi 06]

O PRT

- dynamic lighting + precompute light transport
- Fix: material + geometry

O PRT based BRDF editing

- dynamic material + precompute material transport
- Fix: lighting + geometry + viewpoint

BRDF Editing [Ben-Artzi 06]

○ Approach: parameterize BRDF as 1D curve

$$
\rho(\mathbf{i}, \mathbf{0})=\rho_{q}(\mathbf{i}, \mathbf{0}) f(\gamma(\mathbf{i}, \mathbf{0}))
$$

$$
f(\gamma) \approx \sum_{\text {wavelet basis }}^{c_{j} b_{j}(\gamma)}
$$

O Rendering Algorithm

- Precompute:

$$
T_{j}=\int_{\Omega} L(\mathbf{i}) V(\mathbf{i}) \max (0, \boldsymbol{n} \cdot \mathbf{i}) \rho_{q}(\mathbf{i}, \mathbf{o}) b_{j}(\gamma(\mathbf{i}, \mathbf{o})) \mathrm{di}
$$

- Runtime: (viewing direction $\mathbf{0}$ is fixed)

$$
L(\mathbf{0}) \approx \sum c_{j} T_{j}
$$

Results

BRDF Editing with interreflection [Sun06]

O dynamic lighting + viewpoint + material
O Fix: geometry
O all-frequency one bounce interreflection
O Introduce PTT: precomputed transfer tensors

Results

O Interactive rates
41.11 fps

Translucent Editing [Xu 07]

o Combine the ideas in "BRDF editing" and in "translucent rendering"

- dynamic dipole parameters + precompute material transport
- Compute single/multiple scattering separately
- Basis Function: piecewise linear

Results

O Real-time, environment lighting
O Fix: lighting + geometry
o Changing scattering parameters

PRT vs analytic integration

Rendering Integral $\quad \int_{\Omega} L(\mathbf{i}) V(\mathbf{i}) \rho(\mathbf{i}) d \mathbf{i}$

- PRT (Precomputation)
- Long precomputation time, large storage
- Bake geometry/material/lighting into precomputation, needs to fix them
O Analytic Computation
- No (or small) precomputation
- Everything dynamic, could be run-time changed

SG based analytic Integration

- SG as a PRT basis [Tsai 2006]
- rendering wi: :

Rendering with dynamic BRDFs [Wang09]

O static scene, dynamic lighting, dynamic BRDF
○ BRDF: microfacet model

- parametric \leftrightarrow measured
- isotropic \leftrightarrow anisotropic
- glossy \leftrightarrow mirror-like

Algorithm Overview

Spherical Gaussians SSDF Prefiltered Environment

Results

Rendering and appearance

 editing of hairs [Xu 2011]Single scattering

$$
L\left(\omega_{o}\right)=D \int_{\Omega} L\left(\omega_{i}\right) T\left(\omega_{i}\right) S\left(\omega_{i}, \omega_{o}\right) \cos \theta_{i} d \omega_{i}
$$

- $L\left(\omega_{i}\right)$: environment lighting
- $T\left(\omega_{i}\right)$: self shadowing
- $S\left(\omega_{i}, \omega_{o}\right)$: hair scattering function

Rendering and appearance

 editing of hairs [Xu 2011]Single scattering

- Approximate $L\left(\omega_{i}\right)$ by a set of SGs $G_{j}\left(\omega_{i}\right)$ [Tsai and Shih 2006]

Rendering and appearance

 editing of hairs [Xu 2011]Single scattering

- Approximate $L\left(\omega_{i}\right)$ by a set of SG\& \subset ((ω) ITaai and Chih on (al
- Move T out from the integral [Ren Problem: evaluate scattering Integral

Single Scattering Integral

$$
\int_{\Omega} G_{j}\left(\omega_{i}\right) S\left(\omega_{i}, \omega_{o}\right) \cos \theta_{i} d \omega_{i}
$$

O Previous Approach [Ren 2010]

- Precompute the integral into 4D table

O Our key insight

- Is there an approximated analytic solution?
- YES
- Decompose SG $G_{j}\left(\omega_{i}\right)$ into products of circular Gaussians
- Approximate scattering function $S\left(\omega_{i}, \omega_{o}\right)$ by circular Gaussians

Results

O No precomputation
O all (geometry, lighting, hair scattering param.) dynamic

One-bounce interreflection [Xu 14]

O Aim at accurately and efficiently computing one-bounce interreflections with allfrequency BRDFs

O SG-based representation of BRDFs and lighting

O A novel analytic rendering formula

One-bounce Interreflection Model

$$
L_{\mathrm{x}}(\mathbf{0})=\int_{\Omega_{T}} \rho_{\mathrm{x}}(-\mathrm{r}, \mathbf{0}) \max \left(-\mathbf{r} \cdot \mathbf{n}_{\mathrm{x}}, 0\right) \int_{\Omega} L_{l}(\mathbf{i}) \rho_{T}(\mathrm{i}, \mathrm{r}) \max \left(\boldsymbol{i} \cdot \mathbf{n}_{\mathrm{T}}, 0\right) \operatorname{didr}
$$

Configuration:

- Single triangle reflector
- Distant lighting
- No occlusion between the light, the reflector, and the receiver
- Ignore textures on the reflector
- Uniform BRDF (reflector)

One-bounce Interreflection Model

Results

Limitation of SGs

O Representing real functions

- A mixture model of \boldsymbol{n} scattered SGs are required
- Poor scalability
- More anisotropic functions require more SGs
- Making Trade-off
- Larger $\boldsymbol{n} \rightarrow$ more accuracy, more cost
- Smaller $\boldsymbol{n} \rightarrow$ less accuracy, less cost

An example

Anisotropic SG [Xu 14]

ASGs

O Desired operators

- Closed-form integral
- Closed-form product
- Closed-form convolution

Integral of an ASG

- Integral

$$
\int_{\Omega} G(\mathbf{v}) \mathrm{d} \mathbf{v}
$$

$$
=\int_{\phi=0}^{2 \pi}\left(\int_{\theta=0}^{\pi / 2} e^{-\lambda(\sin \theta \cos \phi)^{2}-\mu(\sin \theta \sin \phi)^{2}} \sin \theta \cos \theta \mathrm{~d} \theta\right) \mathrm{d} \phi
$$

- Our approximation

$$
\int_{\Omega} G(v) \mathrm{d} v \approx \frac{\pi}{\sqrt{\lambda \mu}}
$$

- Accurate (error < 0.68\%) when $\lambda, \mu>5$

Product of two ASGs

○ Our approximation: $G\left(\mathbf{v} ; A_{1}\right) \cdot G_{2}\left(\mathbf{v} ; A_{2}\right) \approx S\left(\mathbf{z}_{3} ; \mathbf{z}_{1}, \mathbf{z}_{2}\right)$. $G\left(\mathbf{v} ; A_{3}\right)$

- Validation
$1^{\text {st }}$ ASG $G\left(\mathbf{v} ; A_{1}\right)$

Approximated product
$2^{\text {nd }}$ ASG $G\left(\mathbf{v} ; A_{2}\right)$

Ground truth product

Convolution of an ASG with an SG

- Our approximation: $C(\mathbf{p}) \approx \frac{\pi}{\sqrt{(\lambda+v)(\mu+v)}} \cdot G\left(\mathbf{p} ;[\mathbf{x}, \mathbf{y}, \mathbf{z}],\left[\frac{v \lambda}{v+\lambda}, \frac{v \mu}{v+\mu}\right]\right)$

ASG

Approximated convolution

Convolution kernel

Results

Linearly Transformed Cosines [Heitz 18]

- Approximate BRDFs using Linearly Transformed Cosines Functions
O analytical integration on spherical polygons

Misc

O Compression

- VQ, PCA, Clustered PCA [Sloan 03]

O Meshless [Lehtinen 08]
O Image space

- Direct-to-indirect Transfer [Hašan 06]

Misc

O Neural network as a basis

- Radiance Regression Functions [Ren 2013]

- Deep Shading [Nalbach 2017]

Reading Materials

O SIGGRAPH 2005 Course , by Jan Kautz et al

- Precomputed Radiance Transfer: Theory and Practice wwwo.cs.ucl.ac.uk/staff/j.kautz/PRTCourse/
O PRT survey, 2007, by Ravi Ramamoorthi
- Precomputation-Based Rendering

O EG STAR 2012 Report, by Ritschel et al

- The State of the Art in Interactive Global Illumination

Conclusion

O Precomputed Radiance Transfer

- Project light/transport to basis function space
- Precompute and save the transport
- Efficient computing at run-time
- Various rendering applications/features
- environment lighting, local lighting
- BRDFs/ translucent
- Material editing
- Static/dynamic scenes
- Interreflection

○ ...

Thanks!

Questions?

