Rendering Tutorial 4: Precomputed Radiance Transfer (预计算辐射传输)

2018-10-11

Rendering under environment lighting

- **i**/**o**: incoming/view directions
- Brute-force computation
 - Resolution: 6*64*64
 - Needs 6*64*64 times for each point!

Precomputed Radiance Transfer (PRT)

- Introduced by Sloan in SIGGRAPH 2002
 - Precomputed Radiance Transfer for Real-Time Rendering in Dynamic, Low-Frequency Lighting Environments [Sloan 02]

Basic idea of PRT [Sloan 02] $L(\mathbf{o}) = \int_{\Omega} L(\mathbf{i})V(\mathbf{i})\rho(\mathbf{i},\mathbf{o}) \max(0, n \cdot \mathbf{i}) d\mathbf{i}$ lighting light transport

- Approximate lighting using basis functions
 - $L(\mathbf{i}) \approx \sum l_i B_i(\mathbf{i})$
- Precomputation stage
 - compute light transport, and project to basis function space
- Runtime stage
 - dot product (diffuse) or matrix-vector multiplication (glossy)

Reduce rendering computation to dot product

- Spherical Harmonics (SH)
- SH have nice properties:
 - orthonormal
 - simple projection/reconstruction
 - rotationally invariant (no aliasing)
 - simple rotation
 - simple convolution
 - few basis functions: low freqs

1=3 m=2

- Spherical Harmonics (SH)
- Light Approximation Examples

• SH is orthonormal, we have:

 $\int_{\Omega} B_i(\mathbf{i}) \cdot B_j(\mathbf{i}) d\mathbf{i} = \mathbf{1} \quad (\mathbf{i} = \mathbf{j})$ $\int_{\Omega} B_i(\mathbf{i}) \cdot B_j(\mathbf{i}) d\mathbf{i} = \mathbf{0} \quad (\mathbf{i} \neq \mathbf{j})$

Original space

SH space

 $L(\mathbf{i}) \approx \sum l_i B_i(\mathbf{i})$

lighting

lighting coefficients

 $L(\mathbf{i}) \approx \sum l_i B_i(\mathbf{i})$

• Projection to SH space $l_i = \int_{0}^{1}$

$$L_i = \int_{\Omega} L(\mathbf{i}) \cdot B_i(\mathbf{i}) d\mathbf{i}$$

Reconstruction

Precomputation

light transport $T_i \approx \int_{\Omega} B_i(\mathbf{i}) V(\mathbf{i}) \max(0, \mathbf{n} \cdot \mathbf{i}) d\mathbf{i}$

No shadow/ shadow / inter-reflection

Run-time Rendering $L(\mathbf{o}) \approx \rho \sum l_i T_i$

- Rendering at each point is reduced to a dot product
 - First, project the lighting to the basis to obtain l_i
 - Or, rotate the lighting instead of re-projection
 - Then, compute the dot product
- Real-time: easily implemented in shader

Diffuse Rendering Results

No Shadows

Shadows

Shadows+Inter

Rendering: vector-matrix multiplication

Time Complexity

- #SH Basis : 9/16/25
- Oiffuse Rendering
 - At each point: dot-product of size 16
- Glossy Rendering
 - At each point: vector(16) * matrix (16*16)

Glossy Rendering Results

No Shadows/Inter

Shadows

Shadows+Inter

- Glossy object, 50K mesh
- Runs at 3.6 fps on 2.2Ghz P4, ATI Radeon 8500

Interreflections and Caustics interreflections

none

1 bounce

2 bounces

caustics

Transport Paths

Arbitrary BRDF Results

Anisotropic BRDFs

Spatially Varying

Results

Acquired Environments

Geometry: 50k vertex mesh

Summary of [Sloan 02]

- Approximate Lighting and light transport using basis functions (SH)
 - Lighting -> lighting coefficients
 - light transport -> coefficients / matrices
- Precompute and store light transport
- Rendering reduced to:
 - Diffuse: dot product
 - Glossy: vector matrix multiplication

Limitations [Sloan 02]

- Low-frequency
 - Due to the nature of SH
- Dynamic lighting, but static scene/material
 - Changing scene/material invalidates precomputed light transport
- Big precomputation data

Follow up works

- More basis functions
- dot product => triple products
- Static scene => dynamic scene
- Fix material => dynamic material
- Other effects: translucent, hair, ...
- Precomputation => analytic computation
- ...

More basis functions

- Spherical Harmonics (SH)
- Wavelet
- Zonal Harmonics
- Spherical Gaussian (SG)
- Piecewise Constant

Wavelet [Ng 03]

- O Haar wavelet
- Projection:

A non-linear

- Wavelet Transformation
- Retain a small number of non-zero coefficients

approximation
 All-frequency representation

low frequency vs all frequency Teapot in Grace Cathedral

Low frequency (SH)

All frequency (Wavelet)

Relighting as Matrix-Vector Multiply

$$= \begin{bmatrix} T_{11} & T_{12} & L & T_{1M} \\ T_{21} & T_{22} & L & T_{2M} \\ T_{31} & T_{32} & L & T_{3M} \\ \mathbf{M} & \mathbf{M} & \mathbf{O} & \mathbf{M} \\ T_{N1} & T_{N2} & L & T_{NM} \end{bmatrix} \begin{bmatrix} L_1 \\ L_2 \\ \mathbf{M} \\ L_N \end{bmatrix}$$

Relighting as Matrix-Vector Multiply

Output Image (Pixel Vector)

Input Lighting(Cubemap Vector)

 $= \begin{bmatrix} T_{11} & T_{12} & L & T_{1M} \\ T_{21} & T_{22} & L & T_{2M} \\ T_{31} & T_{32} & L & T_{3M} \\ \mathbf{M} & \mathbf{M} & \mathbf{O} & \mathbf{M} \\ \mathbf{M} & \mathbf{M} & \mathbf{O} & \mathbf{M} \\ T_{N1} & T_{N2} & L & T_{NM} \end{bmatrix} \begin{bmatrix} L_1 \\ L_2 \\ \mathbf{M} \\ L_N \end{bmatrix}$

Non-linear Wavelet Light Approximation

Non-linear Wavelet Light Approximation

0

0

0

0

()

 L_2 ¥2 12 L_6 Μ

Non-linear Approximation

Retain 0.1% – 1% terms

- 1

$$\begin{bmatrix} T_{11} & T_{12} & T_{13} & T_{14} & L & T_{1M} \\ T_{21} & T_{22} & T_{23} & T_{24} & L & T_{2M} \\ T_{31} & T_{32} & T_{24} & T_{34} & L & T_{3M} \\ T_{41} & T_{42} & T_{43} & T_{44} & L & T_{4M} \\ T_{51} & T_{52} & T_{53} & T_{54} & L & T_{5M} \\ T_{61} & T_{62} & T_{63} & T_{64} & L & T_{6M} \\ \mathbf{M} & \mathbf{M} & \mathbf{M} & \mathbf{M} & \mathbf{O} & T_{7M} \\ T_{N1} & T_{N2} & T_{N3} & T_{N4} & L & T_{NM} \end{bmatrix}$$

$^{-}T_{11}$	T_{12}	T_{13}	T_{14}	L	T_{1M}
T_{21}	T_{22}	T_{23}	T_{24}	L	T_{2M}
T_{31}	T_{32}	T_{24}	T_{34}	L	$T_{_{3M}}$
T_{41}	T_{42}	T_{43}	T_{44}	L	T_{4M}
T_{51}	T_{52}	T_{53}	T_{54}	L	T_{5M}
T_{61}	T_{62}	T_{63}	T_{64}	L	$T_{_{6M}}$
Μ	Μ	Μ	M	Ο	T_{7M}
T_{N1}	T_{N2}	T_{N3}	$T_{_{N4}}$	L	$T_{_{NM}}$

Extract Row

$^{-}T_{11}$	T_{12}	T_{13}	T_{14}	L	T_{1M}
T_{21}	T_{22}	T_{23}	T_{24}	L	T_{2M}
T_{31}	T_{32}	T_{24}	T_{34}	L	T_{3M}
T_{41}	T_{42}	T_{43}	T_{44}	L	T_{4M}
T_{51}	T_{52}	T_{53}	T_{54}	L	T_{5M}
T_{61}	T_{62}	T_{63}	T_{64}	L	$T_{_{6M}}$
Μ	Μ	Μ	Μ	Ο	$T_{_{7M}}$
T_{N1}	T_{N2}	T_{N3}	T_{N4}	L	$T_{_{NM}}$

$^{-}T_{11}$	T_{12}	T_{13}	T_{14}	L	T_{1M}
T_{21}	T_{22}	T_{23}	T_{24}	L	T_{2M}
T_{31}	T_{32}	T_{24}	T_{34}	L	$T_{_{3M}}$
T_{41}	T_{42}	T_{43}	T_{44}	L	$T_{_{4M}}$
T_{51}	T_{52}	T_{53}	T_{54}	L	T_{5M}
T_{61}	T_{62}	T_{63}	T_{64}	L	$T_{_{6M}}$
Μ	Μ	Μ	M	Ο	T_{7M}
T_{N1}	T_{N2}	T_{N3}	$T_{_{N4}}$	L	$T_{_{NM}}$

$^{-}T_{11}$	T_{12}	T_{13}	T_{14}	L	T_{1M}
T_{21}	T_{22}	T_{23}	T_{24}	L	T_{2M}
T_{31}	T_{32}	T_{24}	T_{34}	L	T_{3M}
T_{41}	T_{42}	T_{43}	T_{44}	L	T_{4M}
T_{51}	T_{52}	T_{53}	T_{54}	L	T_{5M}
T_{61}	T_{62}	T_{63}	T_{64}	L	T_{6M}
Μ	Μ	Μ	M	Ο	$T_{_{7M}}$
T_{N1}	T_{N2}	T_{N3}	$T_{_{N4}}$	L	T_{NM}

$^{-}T_{11}$	T_{12}	T_{13}	T_{14}	L	T_{1M}
T_{21}	T_{22}	T_{23}	T_{24}	L	T_{2M}
T_{31}	T_{32}	T_{24}	T_{34}	L	T_{3M}
T_{41}	T_{42}	T_{43}	T_{44}	L	T_{4M}
T_{51}	T_{52}	T_{53}	T_{54}	L	T_{5M}
T_{61}	T_{62}	T_{63}	T_{64}	L	T_{6M}
Μ	Μ	Μ	M	Ο	$T_{_{7M}}$
T_{N1}	T_{N2}	T_{N3}	$T_{_{N4}}$	L	T_{NM}

$^{-}T_{11}^{-}$,	0	0	T_{14} ,	L	0
T_{21}	T_{22}	T_{23}	T_{24}	L	T_{2M}
T_{31}	T_{32}	T_{24}	T_{34}	L	T_{3M}
T_{41}	T_{42}	T_{43}	T_{44}	L	$T_{_{4M}}$
T_{51}	T_{52}	T_{53}	T_{54}	L	T_{5M}
T_{61}	T_{62}	T_{63}	T_{64}	L	T_{6M}
Μ	Μ	Μ	Μ	Ο	T_{7M}
T_{N1}	T_{N2}	T_{N3}	$T_{_{N4}}$	L	T_{NM}

Store Back in Matrix

T_{11} ,	0	0	T_{14} ,	L	0
T_{21}	T_{22}	T_{23}	T_{24}	L	$T_{_{2M}}$
T_{31}	T_{32}	T_{24}	T_{34}	L	T_{3M}
T_{41}	T_{42}	T_{43}	T_{44}	L	$T_{_{4M}}$
T_{51}	T_{52}	T_{53}	T_{54}	L	T_{5M}
T_{61}	T_{62}	T_{63}	T_{64}	L	$T_{_{6M}}$
Μ	Μ	Μ	M	Ο	T_{7M}
T_{N1}	T_{N2}	T_{N3}	$T_{_{N4}}$	L	T_{NM}

Only 3% – 30% are non-zero
Why Non-linear Approximation?

- Linear
 - Use a fixed set of approximating functions
 - Precomputed radiance transfer uses 25 100 of the lowest frequency spherical harmonics
- Non-linear
 - Use a dynamic set of approximating functions (depends on each frame's lighting)
 - In our case: choose 10's 100's from a basis of 24,576 wavelets

Overall Rendering Algorithm

- Pre-compute (per scene)
 - Compute matrix in pixel basis
 - Wavelet transform rows
 - Quantize, store
- Interactive Relighting (each frame)
 - Wavelet transform lighting
 - Prioritize and retain *N* wavelet coefficients
 - Perform sparse-matrix vector multiplication

Output Image Comparison

25

200

2,000

Limitation

- Wavelet: not rotational invariant
 - Re-projection at each frame
 - Results in flicking
- Only support dot-product operator
 - Limited to diffuse or fix-view glossy

Results

Zonal Harmonics [Sloan 05]

- circularly symmetric functions
- Subset of SH basis (m=0)

- Low-frequency
- Rotational invariant
- Much more faster in rotation than SH

Spherical Gaussian (SG) [Tsai 06]

• SGs (or Spherical Radial Basis Functions, SRBFs) $G(\mathbf{v}; \mathbf{p}, \lambda) = e^{\lambda(\mathbf{v} \cdot \mathbf{p} - 1)}$

varying center

Spherical Gaussian (SG) [Tsai 06]

• SGs (or Spherical Radial Basis Functions, SRBFs) $G(\mathbf{v}; \mathbf{p}, \lambda) = e^{\lambda(\mathbf{v} \cdot \mathbf{p} - 1)}$

increasing bandwidth

Mathematical Properties of SGs

- Olosed-form integral
 - The integral of an SG is closed-form

$$\int_{\Omega} G(\mathbf{v}; \mathbf{p}, \lambda) d\mathbf{v} = \frac{2\pi}{\lambda} (1 - e^{-2\lambda})$$

Mathematical Properties of SGs

• Closed under multiplication

• The product of two SGs is also an SG $G(\mathbf{v}; \mathbf{p}_1, \lambda_1) \cdot G(\mathbf{v}; \mathbf{p}_2, \lambda_2) = cG\left(\mathbf{v}; \frac{\lambda_1 \mathbf{p}_1 + \lambda_1 \mathbf{p}_2}{|\lambda_1 \mathbf{p}_1 + \lambda_1 \mathbf{p}_2|}, |\lambda_1 \mathbf{p}_1 + \lambda_1 \mathbf{p}_2|\right)$

Mathematical Properties of SGs

- Closed under convolution approximately
 - The convolution of two SGs is still an SG

 $\int_{\Omega} G(\mathbf{v}; \mathbf{p}_1, \lambda_1) \cdot G(\mathbf{v}; \mathbf{p}_2, \lambda_2) d\mathbf{v} \approx c_3 G\left(\mathbf{p}_1; \mathbf{p}_2, \frac{\lambda_1 \lambda_2}{\lambda_1 + \lambda_2}\right)$

Summary of SGs

- Rotationally invariant
 - Lighting, BRDFs demand rotation
- Capable of representing all-frequency signals
 - All-frequency lighting/BRDFs
- Closed-form integral
 - rendering is essentially integration [Kajiya 1986]
- Closed under multiplication
 - multiplication of lighting, visibility and BRDFs
- Olosed under convolution
 - support for various applications
- SGs are non-orthogonal!

Lighting Approximation

non-linear process: iterative L-BFGS-B solver (slow)

 $L(\mathbf{i}) \approx \sum l_i G(\mathbf{i}; \mathbf{p}_i, \lambda_i)$

BRDF Factorization [Wang 03, Liu 03]

Precompute the factorization

$$\rho(\mathbf{i}, \mathbf{o}) \approx \sum_{\mathbf{m}} f_{\mathbf{m}}(\mathbf{i}) \cdot g_{\mathbf{m}}(\mathbf{o})$$

Overall Rendering Algorithm

Oerivation: Factorizing BRDF

 $L(\mathbf{o}) = \int_{\Omega} L(\mathbf{i})V(\mathbf{i})\rho(\mathbf{i},\mathbf{o})\max(0,\boldsymbol{n}\cdot\mathbf{i})\,\mathrm{d}\mathbf{i}$ $L(\mathbf{o}) = \int_{\Omega} L(\mathbf{i})V(\mathbf{i}) \left(\sum_{\mathbf{m}} f_{\mathbf{m}}(\mathbf{i}) \cdot g_{\mathbf{m}}(\mathbf{o})\right) \max(0, \mathbf{n} \cdot \mathbf{i}) d\mathbf{i}$ $L(\mathbf{o}) = \sum_{\mathbf{m}} g_{\mathbf{m}}(\mathbf{o}) \int_{\Omega} L(\mathbf{i})V(\mathbf{i})f_{\mathbf{m}}(\mathbf{i}) \max(0, \mathbf{n} \cdot \mathbf{i}) d\mathbf{i}$ Both represented using SGs

Overall Rendering Algorithm

Oerivation: projection to SGs

$$L(\mathbf{o}) = \sum_{\mathbf{m}} g_{\mathbf{m}}(\mathbf{o}) \int_{\Omega} L(\mathbf{i}) T(\mathbf{i}) \, d\mathbf{i}$$

$$L(\mathbf{i}) \approx \sum_{i} l_{i} G_{i}(\mathbf{i}) \qquad \qquad T(\mathbf{i}) \approx \sum_{i} t_{j} G_{j}(\mathbf{i})$$
non-linear approx.
$$L(\mathbf{o}) = \sum_{\mathbf{m}} g_{\mathbf{m}}(\mathbf{o}) \sum_{i,j} l_{i} t_{j} \int_{\Omega} G_{i}(\mathbf{i}) G_{j}(\mathbf{i}) \, d\mathbf{i}$$
analytic solution

• Timing: O(N*N*M), non-orthogonal

Results

(a) Raw PRT data

(b) Uncompressed PRT data in SRBFs

(c) Compressed PRT data in SRBFs using CTA

Figure 6: Rendered results of the teapot model.

(a) Raw PRT data

(b) Uncompressed PRT data in SRBFs

(c) Compressed PRT data in SRBFs using CTA

Piecewise Constant [Xu 08]

- Spherical Piecewise Constant Basis Function (SPCBF)
 - Split sphere into regions
 - Each region is represented by a constant
- Property
 - All-frequency
 - Rotation-Invariant
 - Multi-product
 - Fast projection

Piecewise Constant [Xu 08]

• Light Projection

Bottom-up optimization

Piecewise Constant [Xu 08]

Projection of visibility and BRDFs

• BRDF

using summed area table

- Visibility
 - $\circ\,$ Using visibility distance table

Results

Comparison of Basis Functions

	SH	Wavelet	SG	SPCBF
Orthogonal			\times	
All-frequency	X			
Rotation invariant		X		
Multiple product			√ ?	
Compact Representation				\times

Triple Product

Original PRT: light * light transport

• ... Multiple Product

Wavelet Triple Product [Ng 04] $\int_{S^2} * * d\omega$ $B = \int_{S^2} L(\omega) V(\omega) \tilde{\rho}(\omega) d\omega$ $= \int_{S^2} \left(\sum_i L_i \Psi_i(\omega) \right) \left(\sum_i V_j \Psi_j(\omega) \right) \left(\sum_i \tilde{\rho}_k \Psi_k(\omega) \right) d\omega$ $=\sum_{i}\sum_{j}\sum_{i}\sum_{j}L_{i}V_{j}\tilde{\rho}_{k}\int_{S^{2}}\Psi_{i}(\omega)\Psi_{j}(\omega)\Psi_{k}(\omega)\,d\omega$ $=\sum\sum\sum L_i V_j \,\tilde{\rho}_k \, C_{ijk}$

Wavelet Triple Product [Ng 04] $C_{ijk} = \int_{S^2} \Psi_i(\omega) \Psi_j(\omega) \Psi_k(\omega) \ d\omega$

Basis Choice	Number Non-Zero C_{ijk}
General (e.g. PCA)	$O(N^3)$
Pixels	O(N)
Fourier Series	$O(N^2)$
SH	$O(N^{5/2})$
Haar Wavelets	$O(N \log N)$

Wavelet Triple Product [Ng 04]

SG Triple Product

- Analytic Computation
 - The product of two SGs is also an SG $G(\mathbf{v}; \mathbf{p}_1, \lambda_1) \cdot G(\mathbf{v}; \mathbf{p}_2, \lambda_2) = cG\left(\mathbf{v}; \frac{\lambda_1 \mathbf{p}_1 + \lambda_1 \mathbf{p}_2}{|\lambda_1 \mathbf{p}_1 + \lambda_1 \mathbf{p}_2|}, |\lambda_1 \mathbf{p}_1 + \lambda_1 \mathbf{p}_2|\right)$

Could be easily extended to multiple product

SH Triple Product

• Precompute all triple products of SH basis

 $C_{ijk} = \int_{\Omega} B_i(\mathbf{i}) B_j(\mathbf{i}) B_k(\mathbf{i}) d\mathbf{i}$

Compute the product
 Origin
 of two functions
 directly in SH space:

$$lt_k = \sum_{i,j} l_i t_j C_{ijk}$$

Original space SH space $L(\mathbf{i}) \approx \sum l_i B_i(\mathbf{i})$ $T(\mathbf{i}) \approx \sum t_j B_j(\mathbf{i})$ $L(\mathbf{i}) \cdot T(\mathbf{i}) \approx \sum l t_k B_k(\mathbf{i})$

Ould be easily extended to multiple product

Shadow Field [Zhou05]

PRT

- Handle only static scenes
- Shadow Field
 - Handle moving light sources & objects
 - Rigid objects + dynamic scene configuration
 - Capture SRF/OOF around lights/objects

Sampling & Compression (Low Frequency)

Rendering: Products

Results

SH Exponential [Ren 06]

- Shadow Field
 - Rigid objects
 - Computation of SH multiple product is still costly

- SH Exponential
 - Dynamic, deformation scene (objects)
 - Derive Exp/Log operators in SH space
 - Convert costly multiple product to summation in log space

Blocker Geometry Approximation

- Using sphere sets
- Dynamically update at each frame

original

 $E=0.35, n_S=64$ our method

Rendering Computation

Multiple Product (a very big number)

Light * Self_Vis * Occlusion1 * Occlusion2 * * OcclusionN * BRDF ***

Approach

$$f_1 * f_2 * \cdots * f_n$$

 $\exp(\log f_1 + \log f_2 + \dots + \log f_n)$

- Implement exp/log directly in SH space
- Much faster

Results

Dinosaur Demo

120k vertices (75k static, 45k dynamic)
500 spheres in blocker approximation
250 receiver clusters
12.6 Hz average frame rate
More Rendering Applications

- Translucent Rendering
- Hair Rendering
- BRDF Editing
- Translucent Editing
- Hair Editing

Translucent Rendering [Wang05]

• Extend PRT to handle translucent materials

 $L(x_{o}, \mathbf{o}) = \int_{A} \int_{\Omega} L(x_{i}, \mathbf{i}) S(x_{i}, \mathbf{i}; x_{o}, \mathbf{o}) \max(0, n \cdot \mathbf{i}) d\mathbf{i}$ \mathbf{x}_{i} BSSRDF \mathbf{x}_{i} factorized single scattering +diffuse multiple scattering x_{o}

Precompute the transport for multiple scattering and single scattering separately

- Oynamic environment lighting
- Fix: geometry + materials
- Real-time

Multiple Scattering

Single Scattering

Multiple and Single Scattering

Diffuse BRDF

Hair Rendering [Ren 10]

• Extend PRT to handle hair rendering

• Support environment lighting

Single Scattering Computation $L(\mathbf{o}) = D \int_{\Omega} L(\mathbf{i})T(\mathbf{i})S(\mathbf{i}, \mathbf{o}) \max(0, n \cdot \mathbf{i}) d\mathbf{i}$ self shadow hair scattering func.

- Approximate L(o) by N SGs
- Move *T* out from the integral
 - small variation of T

$$L(\mathbf{o}) = D \sum_{j=1}^{N} L_j \tilde{T} \int_{\Omega} G_j(\mathbf{i}) S(\mathbf{i}, \mathbf{o}) \max(0, \mathbf{n} \cdot \mathbf{i}) d\mathbf{i}$$

Precompute as 4D table

- Oynamic lighting, geometry
- Fix hair scattering parameters
- Interactive framerates

BRDF Editing [Ben-Artzi 06]

PRT

- dynamic lighting + precompute light transport
- Fix: material + geometry

PRT based BRDF editing

- dynamic material + precompute material transport
- Fix: lighting + geometry + viewpoint

BRDF Editing [Ben-Artzi 06]

• Approach: parameterize BRDF as 1D curve $\rho(\mathbf{i}, \mathbf{o}) = \rho_q(\mathbf{i}, \mathbf{o}) f(\gamma(\mathbf{i}, \mathbf{o}))$

quotient term 1D curve

 $f(\gamma) \approx \sum c_j b_j(\gamma)$

wavelet basis

- Rendering Algorithm
 - Precompute:

 $T_j = \int_{\Omega} L(\mathbf{i})V(\mathbf{i}) \max(0, \mathbf{n} \cdot \mathbf{i}) \rho_q(\mathbf{i}, \mathbf{o}) b_j(\gamma(\mathbf{i}, \mathbf{o})) d\mathbf{i}$

• Runtime: (viewing direction **o** is fixed)

$$L(\mathbf{o}) \approx \sum c_j T_j$$

BRDF Editing with interreflection [Sun06]

- Output dynamic lighting + viewpoint + material
- Fix: geometry
- all-frequency one bounce interreflection
- Introduce PTT: precomputed transfer tensors

Interactive rates

41.11 fps R Ditt Uniform Spec Uniform Kare 0.00000 Helft: 0.20000 basa 🕜 . 101-0: 0:20000 105-01-0.000000 . 11:1.9 Kd E: 0.20000 Kell: 0.00000

Translucent Editing [Xu 07]

- Combine the ideas in "BRDF editing" and in "translucent rendering"
 - dynamic dipole parameters + precompute material transport
 - Compute single/multiple scattering separately
 - Basis Function: piecewise linear

Real-time, environment lighting

Fix: lighting

 + geometry

 Changing

 scattering
 parameters

PRT vs analytic integration

Rendering Integral

 $\int_{\Omega} L(\mathbf{i})V(\mathbf{i})\rho(\mathbf{i})d\mathbf{i}$

• PRT (Precomputation)

- Long precomputation time, large storage
- Bake geometry/material/lighting into precomputation, needs to fix them
- Analytic Computation
 - No (or small) precomputation
 - Everything dynamic, could be run-time changed

SG based analytic Integration

- SG as a PRT basis [Tsai 2006]
- rendering wight namic BR [Wang 20]

Rendering with dynamic BRDFs [Wang09]

- Static scene, dynamic lighting, dynamic BRDF
- BRDF: microfacet model
 - parametric \leftrightarrow measured
 - isotropic \leftrightarrow anisotropic
 - glossy \leftrightarrow mirror-like

Algorithm Overview

Spherical Gaussians SSDF Prefiltered Environment

Rendering and appearance editing of hairs [Xu 2011] Single scattering

$$L(\omega_o) = D \int_{\Omega} L(\omega_i) T(\omega_i) S(\omega_i, \omega_o) \cos \theta_i d\omega_i$$

- $L(\omega_i)$: environment lighting
- $T(\omega_i)$: self shadowing
- $S(\omega_i, \omega_o)$: hair scattering function

 $L(\omega_{o}) \approx D \sum_{i} \int_{j} \int_{j} \int_{j} \int_{i} \int_{$

• Approximate $L(\omega_i)$ by a set of SGs $G_j(\omega_i)$ [Tsai and Shih 2006]

Rendering and appearance editing of hairs [Xu 2011] Single scattering

 $L(\omega_o) \approx D \sum_{j} l_j \tilde{T} \iint_{\Omega} Gf(j\omega_i) \mathcal{T}(\omega_i) \mathcal{T}(\omega_i), \mathcal{C}(\omega_i), \mathcal{$

- Approximate $L(\omega_i)$ by a set of SGs $G_1(\omega_i)$ [Tsai and Shib 2006]
- Move T out from the integral [Ren

Problem: evaluate scattering Integral

Single Scattering Integral

$$\int_{\Omega} G_j(\omega_i) S(\omega_i, \omega_o) \cos \theta_i \, d\omega_i$$

- Previous Approach [Ren 2010]
 - Precompute the integral into 4D table
- Our key insight
 - Is there an approximated analytic solution?
 - YES
 - Decompose SG $G_i(\omega_i)$ into products of circular Gaussians
 - Approximate scattering function $S(\omega_i, \omega_o)$ by circular Gaussians

- No precomputation
- all (geometry, lighting, hair scattering param.) dynamic

	B term:	G term:	R term:	nhaemtice coefficient	TRT lobe:	R lobe:	longitudinal width:	TRT lobe:	H lobe:	longitudinal shift:	eccentricity:	azimuthal width:	refractive index:	Hair Parameters:
	~	-\$	-0			->		~						
	0.367	0.133	0.113	0.400	0.275	0.120		0 100	-0.035	0.000	0 1.000	0.200	> 1.550	
	The second secon	=	-	1	97 J	10	7.2	1	4					
A			S. S.	00	-		elli Me			A REAL	-			
, And							de la companya de la		R for the			110	1 des	
					- Staff		1							-
		-		2-1			12		1. 100					

One-bounce interreflection [Xu 14]

- Aim at accurately and efficiently computing one-bounce interreflections with *allfrequency* BRDFs
- SG-based representation of BRDFs and lighting
- A novel *analytic* rendering formula

One-bounce Interreflection Model

 $L_{\mathbf{x}}(\mathbf{o}) = \int_{\Omega_T} \rho_{\mathbf{x}}(-\mathbf{r}, \mathbf{o}) \max(-\mathbf{r} \cdot \mathbf{n}_{\mathbf{x}}, 0) \int_{\Omega} L_l(\mathbf{i}) \rho_T(\mathbf{i}, \mathbf{r}) \max(\mathbf{i} \cdot \mathbf{n}_{\mathbf{T}}, 0) \operatorname{did}\mathbf{r}$

Configuration:

- Single triangle reflector
- Distant lighting
 - No occlusion between the light, the reflector, and the receiver
 - Ignore textures on the reflector
- Uniform BRDF (reflector)

One-bounce Interreflection Model

Limitation of SGs

- Representing real functions
 - A mixture model of *n* scattered
 SGs are required
 - Poor scalability
 - More anisotropic functions require more SGs
 - Making Trade-off
 - Larger $n \rightarrow$ more accuracy, more cost
 - \circ Smaller $n \rightarrow$ less accuracy, less cost

An example

ASGs

- Oesired operators
 - Closed-form integral
 - Closed-form product
 - Closed-form convolution

Integral of an ASG

- Integral
 - $\int_{\Omega} G(\mathbf{v}) d\mathbf{v}$ = $\int_{\phi=0}^{2\pi} \left(\int_{\theta=0}^{\pi/2} e^{-\lambda(\sin\theta\cos\phi)^2 - \mu(\sin\theta\sin\phi)^2} \sin\theta\cos\theta \, d\theta \right) d\phi$
- Our approximation

$$\int_{\Omega} G(\mathbf{v}) \mathrm{d}\mathbf{v} \approx \frac{\pi}{\sqrt{\lambda\mu}}$$

• Accurate (error < 0.68%) when $\lambda, \mu > 5$

Product of two ASGs

- Our approximation: $G(\mathbf{v}; A_1) \cdot G_2(\mathbf{v}; A_2) \approx S(\mathbf{z}_3; \mathbf{z}_1, \mathbf{z}_2) \cdot G(\mathbf{v}; A_3)$
- Validation $1^{st} ASG$ $G(\mathbf{v}; A_1)$

Approximated product

Convolution of an ASG with an SG

• Our approximation: $C(\mathbf{p}) \approx \frac{\pi}{\sqrt{(\lambda+\nu)(\mu+\nu)}} \cdot G\left(\mathbf{p}; [\mathbf{x}, \mathbf{y}, \mathbf{z}], [\frac{\nu\lambda}{\nu+\lambda}, \frac{\nu\mu}{\nu+\mu}]\right)$

Linearly Transformed Cosines [Heitz 18]

- Approximate BRDFs using Linearly Transformed Cosines Functions
- analytical integration on spherical polygons

Misc

- Compression
 - VQ, PCA, Clustered PCA [Sloan 03]
- Meshless [Lehtinen 08]
- Image space
 - Direct-to-indirect Transfer [Hašan 06]

Misc

- Neural network as a basis
 - Radiance Regression Functions [Ren 2013]

• Deep Shading [Nalbach 2017]

Reading Materials

- SIGGRAPH 2005 Course , by Jan Kautz et al
 - Precomputed Radiance Transfer: Theory and Practice www0.cs.ucl.ac.uk/staff/j.kautz/PRTCourse/
- PRT survey, 2007, by Ravi Ramamoorthi
 - Precomputation-Based Rendering
- EG STAR 2012 Report, by Ritschel et al
 - The State of the Art in Interactive Global Illumination

Conclusion

- Precomputed Radiance Transfer
 - Project light/transport to basis function space
 - Precompute and save the transport
 - Efficient computing at run-time
 - Various rendering applications/features
 - environment lighting, local lighting
 - BRDFs/ translucent
 - Material editing
 - Static/dynamic scenes
 - Interreflection
 - 0 ...

Thanks! Questions?