

Motion Capture with Linear Blend Skinning (LBS)

www.yangangwang.com

About me

- 姓 名: 王雁刚
- 工作单位: 东南大学 自动化学院
- 职 称: 副教授
- 毕业院校: 清华大学
- 个人主页: <u>www.yangangwang.com</u>
- 联系电话: 15110264815

电子邮件: <u>yangangwang@seu.edu.cn</u>

学习及工作经历:

- 2017.09 现在: 东南大学自动化学院, 副教授
- 2014.07 2017.08: 微软亚洲研究院, 副研究员
- 2012.10 2013.03: 瑞士洛桑联邦理工大学,访问学者
- 2009.09 2014.07: 清华大学,博士
- 2005.09 2009.07: 东南大学,学士

Conclusion

What is Motion Capture?

"... is a technique of digitally recording 3D human movements for immediate or delayed analysis and playback..."

Full body

Fine detail face

Complex interaction

Applications of Motion Capture

Film industry

Robotics

Biomechanics

Video games

Natural user interaction

Virtual reality

Sensor & Maker System

Pros

- accurate
- real time and robust
- Cons
 - sparse tracker and low spatial resolution
 - expensive hardware
 - cumbersome to wear special suits

Electromechanical system

Hand mocap system

Marker system

Video-based System

Pros

- no markers, no sensors or no special suits
- small and inexpensive hardware configurations
- high spatial resolution
- Cons
 - not as accurate as marker systems
 - not as stable as marker and sensor systems

Faceshift®

Organic Motion®

iPiSoft[®]

Challenges for Video-based System

- Capture high spatial resolution motion
 - few discernible features
 - complex background
- Difficult and nontrivial temporal tracking
 - significant occlusions
 - lighting changes

Few features

Occlusions

nontrivial temporal tracking

Main Solutions

Generative Method

Discriminative Method

Hybrid Method

Articulate Model Deformation

- Consider the following problem
 - we want to deform the mesh model M into mesh model M'
 - implicit skeleton structure
- Articulate shape deformation is very common in real life

Basic Concepts

Rest pose M

Target pose M'

Basic Concepts

Linear Blend Skinning (LBS)

Linear Blend Skinning (LBS)

$$\underbrace{v_i}_{j=1}^m w_{i,j} \mathbf{T}_j v_i = \left(\sum_{j=1}^m \underbrace{w_i}_j \mathbf{T}_j\right) \underbrace{v_i}_{j=1}$$

- **\square** How to compute the Skinning weights $w_{i,j}$?
 - "Automatic Rigging and Animation of 3D Characters", SIGGRAPH 2007

http://www.mit.edu/~ibaran/autorig/pinocchio.html

Key Idea

heat equilibrium to find the weights

$$-\Delta w_j + Hw_j = Hp_j$$

Motion Capture with LBS

Search optimal skinning transformations T to drive the articulate mesh model with lbs(T) to best match the observed image data O

- How to perform the skinning transformations T to drive the articulate mesh model M?
- How to measure the inconsistency between the deformed model and observed image data?
- How to find an optimal skinning transformations?

Motion Capture with LBS

Search optimal skinning transformations T to drive the articulate mesh model with lbs(T) to best match the observed image data O

- How to perform the skinning transformations T to drive the articulate mesh model M?
- How to measure the inconsistency between the deformed model and observed image data?
- How to find an optimal skinning transformations?

Skinning Transformations for Articulate Pose

- Articulate pose is represented as tree structure
- □ N skinning transformations: $(T_1, T_2, ..., T_n)$
 - Each T_i joint has several Degree of Freedom (DoFs)
 - All children will be influenced by their parents

Skinning Transformations for Articulate Pose

Skinning transformations for rigid body movement

- Rotation + translation, a.k.a, screw displacement
- A screw is an 6-dimension ordered pair

 $S = (\mathbf{S}, \mathbf{V})$

Twist of rigid body (actually, twist is a screw)

 $T = (\vec{\omega}, \mathbf{v} + \mathbf{d} \times \vec{\omega})$

 $\vec{\omega}$ is the angular velocity vector

d is the translation vector

 \boldsymbol{v} is the velocity of the origin of the moving frame

https://en.wikipedia.org/wiki/Screw_theory

Skinning Transformations for Articulate Pose

Revolute joints in the articulate pose

• Joint position is **P**, one of rotation axis is $\vec{\omega}$

$$\xi = (\mathbf{P} \times \overrightarrow{\boldsymbol{\omega}}, \overrightarrow{\boldsymbol{\omega}}) = (\mathbf{v}, \overrightarrow{\boldsymbol{\omega}})$$

It can also be represented it as a matrix

$$\hat{\xi} = \begin{bmatrix} 0 & -\omega_z & \omega_y & v_1 \\ \omega_z & 0 & -\omega_x & v_2 \\ -\omega_y & \omega_x & 0 & v_3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Homogenous transformation T^h_i is

$$\mathbf{T}^{\mathbf{h}}_{i} = e^{\theta_{0}\hat{\xi}_{0}} \cdot \prod_{\substack{j \in Parent(i), j \neq 0}} e^{\theta_{j}\hat{\xi}_{j}}$$

---- From appendix B in my Ph.D. Thesis

Motion Capture with LBS

Search optimal skinning transformations T to drive the articulate mesh model with lbs(T) to best match the observed image data O

- How to perform the skinning transformations T to drive the mesh model M?
- How to measure the inconsistency between the deformed model and observed image data?
- How to find an optimal skinning transformations?

- Deform the mesh model M (synthesize)
 - Articulation pose is driven by $\theta = (\theta_0, \theta_1, \dots, \theta_n)$
- Compare the differences between the projected synthesis and real captured image data (analysis)

(a) Mesh model

(b) Segmented images

s (c) Estimated skeleton

(d) Deformed surface

Camera Projection Equation

□ Suppose the camera parameters are *K*, *R*, *t*

- K is the camera intrinsic
- *R*, *t* is the camera extrinsic

Camera projection equation for 3D point x and its corresponding 2D point X (homogeneous)

$$sX = K(Rx + t)$$

s is the scale factor

3D-2D Consistency

For reducing the scale factor s, we use X to cross the two sides of projection equation

$$X \times sX = X \times K(Rx + T)$$

$$0$$

$$[X]_{\times}K(Rx + t) = 0$$
or
$$[X]_{\times}KRx = -[X]_{\times}Kt$$

$$Here, [X]_{\times} = \begin{bmatrix} 0 & -1 & Y \\ 1 & 0 & -X \\ -Y & X & 0 \end{bmatrix}$$

3D-2D Consistency

Take silhouette as example

How do we know the 3D vertex position in the projected contour?

Rendering to Find 3D Position

- Two pass rendering
- First pass: encode the index of mesh triangles into the vertex color for each mesh face with (R, G, B) → 2²⁴-1=8388607
- Second pass: encode the (1,0,0), (0,1,0), (0,0,1) three colors for each mesh face to find the barycentric coordinate

1st pass: color with face index

2nd pass: color for barycentric

More about 3D-2D Consistency

Silhouette and contour matching is successful for model driven motion capture

- Motion Capture Using Joint Skeleton Tracking and Surface • Estimation, CVPR2009
- Markerless Motion Capture of Interacting Characters Using Multi-view Image Segmentation, CVPR2011
- Obtain the silhouette or mask is a very challenge
 - topic
- Deep learning!!! e.g., Mask-rcnn
- Model Rendering with texture
 - SIFT feature matching
 - Color consistency
 - Edge consistency

Motion Capture with LBS

Search optimal skinning transformations T to drive the articulate mesh model with lbs(T) to best match the observed image data O

- How to perform the skinning transformations T to drive the mesh model M?
- How to measure the inconsistency between the deformed model and observed image data?
- How to find an optimal skinning transformations?

Global Optimization

Sampling-based optimization

Interacting simulated annealing (ISA)

Deformed mesh

Observed image

https://www.yangangwang.com/papers/wang-omm-2017-04

Outdoor Markerless Motion Capture with Sparse Handheld Video Cameras, TVCG, 24(5), 2018

Local Optimization

Consider the LBS deformation of articulated shape

$$\boldsymbol{v}_i' = \left(\sum_{j=1}^m \boldsymbol{w}_{i,j} \mathbf{T}_j\right) \boldsymbol{v}_i$$

 v_i : original vertex; v'_i : deformed vertex It is also noted that

$$\mathbf{T}^{\mathbf{h}}_{i} = e^{\theta_{0}\hat{\xi}_{0}} \cdot \prod_{\substack{j \in Parent(i), j \neq 0}} e^{\theta_{j}\hat{\xi}_{j}}$$

Local Optimization

With the Taylor series at v_i and performing the linearization, we could have

$$v_{i}' = \left(I + \theta_{0}\hat{\xi}_{0} + \sum_{j=1}^{m} \overline{w}_{j}\theta_{j}\hat{\xi}_{j}\right)v_{i}$$
Where, $\overline{w}_{j} = \sum_{k \in children(j)} w_{k}$

The upper equation can also be represented as

$$v'_i = v_i + J\chi \longrightarrow (B-8)$$
 in appendix B of my Ph.D. Thesis

Where, χ has all the articulation parameters

---- From appendix B in my Ph.D. Thesis

Local Optimization

- Our goal is to find some χ to perform the 3D-2D matching
- Since we have

□ Solve **Ax** = **b** is easy and fast

Advanced Techniques

- We have discussed about the articulated mesh deformation
- How about non-rigid?

AOAKA

"Girl" 500 frames, 30 fps

 Robust Non-Rigid Motion Tracking and Surface Reconstruction Using L0 Regularization, IEEE Transactions on Visualization and Computer Graphics (**TVCG**), 2018

Advanced Techniques

□ How about motion capture without LBS?

VNect: Real-time 3D Human Pose Estimation with a Single RGB Camera, SIGGRAPH 2017

Advanced Techniques

How about motion capture without LBS?

DensePose:

Dense Human Pose Estimation In The Wild

Rıza Alp Güler * N INRIA, CentraleSupélec

Natalia NeverovaIasonas KokkinosFacebook Al ResearchFacebook Al Research

Riza Alp Güler was with Facebook Al Research during this work.

• Dense human pose estimation aims at mapping all human pixels of an RGB image to the 3D surface of the human, CVPR2018

Conclusion

- LBS is a very basic and widely used technique for articulated motion capture
- LBS suffers from the candy-wrapper effect

LBS

http://igl.ethz.ch/projects/skinning/stretchable-twistable-bones/

Currently, I am focusing on real-time motion capture for hand gesture

The dataset (OneHand10K) will be released in my personal website soon! ^(C)

- More than 10K with 21 2D joints and Mask
- Mask-pose Cascaded CNN for 2D Hand Pose Estimation from Single Color Image, IEEE
 Transactions on Circuits and Systems for Video Technology (**TCSVT**), 2018. Accepted

Any Questions?