Construction and Fabrication of Reversible Shape Transforms

Shuhua Li ${ }^{1,2}$, Ali Mahdavi-Amiri ${ }^{1}$, Ruizhen Hu ${ }^{3}$, Han Liu ${ }^{1,4}$, Changqing Zou ${ }^{5}$, Oliver Van Kaick ${ }^{4}$, Xiuping Liu ${ }^{2}$, Hui Huang ${ }^{3}$, Hao Zhang ${ }^{1}$

${ }^{1}$ Simon Fraser University

${ }^{2}$ Dalian University of Technology
${ }^{3}$ Shenzhen University
${ }^{4}$ Carleton University
${ }^{5}$ University of Maryland, College Park

Geometric Dissection

The classic dissection between a square and a triangle by Henry Dudeney 1907

Ancient Dissection Puzzles

Tangram タングラム

Archimedes＇Stomachion

Famous Questions And Theories

1807 Wallace-Bolyai-Gerwien Theorem

1900 Hilbert's Third Problem
2007 Hinged Dissections Exist

Wallace-Bolyai-Gerwien Theorem 1807

"One polygon can be cut into a finite number of pieces and rearranged into another polygon if and only if two polygons have the same area."

Hilbert's Third Problem
 1900

"/s it always possible to cut one polyhedral into finitely many polyhedral pieces and recompose pieces to form another of equal volume?"
--David Hilbert
23 Jan 1862 - 14 Feb 1943

Hinged Dissections Exist 2007

Two equal-area polygons must possess a hinged dissection*

*Hinged dissections exist. Abbott et al..
Discrete \& Computational Geometry, 2012.

Reversible Hinged Dissections

Reversible inside-out transform (RIOT)*

Reversible Hinged Dissections

Reversible inside-out transform (RIOT)*

Reversible Hinged Dissections

Reversible inside-out transform (RIOT)*

Non-reversible*

Our Motivations: RIOT Calls For More Attentions

No theories ensure that a RIOT always exists between shapes of equal area.
解
No RIOT construction schemes between general shapes.

Only a few manual RIOT designs between non-trivial shapes.

Our Work: From A Design And Modeling Perspective

A quick RIOT exploration tool

Fully automatic approximate RIOT construction

Fabrication to make collision-free assembly puzzles

Related Works in Computer Graphics

3D Decompose-and-assemble

- Dapper: Decompose-and-Pack for 3D Printing. Chen et al., ToG, 2015.
- Reconfigurable Interlocking Furniture. Song et al., ToG, 2017.

Approximate geometric dissections

- An Algorithm for Creating Geometric Dissection Puzzles. Zhou et al., In Proc. of Bridges Conf., 2012.
- Approximate Dissections. Duncan et al., ToG, 2017.

3D geometric puzzles

- Boxelization: folding 3D objects into boxes. Zhou et al., ToG, 2014.
- Computational Design of Twisty Joints and Puzzles. Sun et al., ToG, 2015.
is
The Most Related Work (2017)

Similarities \& Differences

- Natural shape pairs
- Different Problems Hinged \& inside-out reversibility
- Approximate dissections
- Different Approaches

Conjugate trunks

- Additional Tool

Quick RIOT exploration tool

Algorithm Overview

Quick RIOT Exploration

Candidate Trunk Pair

Deformation

Quick RIOT Exploration

Quick Reversibility Scores (QRS) Of Shapes

Complex

Thin

Shapes with a narrow
'waist'

Quick Cross-Reversibility Score (QCRS) Of Shape Pairs

Candidate Trunk Pair
 What is Trunk?

A Trunk T of Shape P

$\overline{\mathrm{T}}$: convex
T : convex, inscribed polygon

Treks into Intuitive Geometry. Jin Akiyama and Kiyoko Matsunaga. 2015. Springer.

Candidate Trunk Pair
 What is Trunk?

The Conjugate Trunk \bar{T}

- Two polygons sharing the same set of edges in reverse order are said to be conjugate.
- T and $\overline{\mathrm{T}}$ are conjugate trunks of P

Treks into Intuitive Geometry. Jin Akiyama

Candidate Trunk Pair ——A Sufficient Condition

Two shapes have a RIOT, if they possess a pair of conjugate trunks*

Candidate Trunk Pair

- Selecting Candidate Vertices
- Generating Candidate Trunks
- Trunk Pair Selection

Candidate Trunk Pair

_- Selecting Candidate Vertices

Two criteria

-Boundary Congruency
-Area Compatibility

The boundary of a reversible shape can be divided into congruent segment pairs.

Candidate Trunk Pair

——Selecting Candidate Vertices

\author{

Two criteria

 -Boundary Congruency

 -Area Compatibility}

Visible Region (VR)

Invisible Region (IVR)

$$
\sum_{i} \operatorname{Area}\left(I V R_{i}(p)\right)<\operatorname{Area}(\operatorname{VR}(\mathrm{p})-\text { Circle }),
$$

$\boldsymbol{V R}(\boldsymbol{p})$-Circle : A circle with the same perimeter as $\operatorname{VR}(\mathrm{p})$
(3)

Candidate Trunk Pair
 Selecting Candidate Vertices

Binary score $S_{\mathrm{b}}(p)$ to exclude points -Criterion: Area Compatibility

Congruency score $S_{c}(p)$ for the remaining points
-Criterion: Boundary Congruency
Candidate vertexes: $S_{c}(p)>0.3$

Candidate Trunk Pair__Generating Candidate Trunks

Candidate trunks

- A upper bound K of trunk edges (auto)
- From triangles to K-gons
- Heuristic conditions: inscribed, convex, boundary congruency, and area for fabrication

Candidate Trunk Pair
 \qquad Trunk Pair Selection

Three criteria
-Edge conjugacy
-Angle reversibility
-Area reversibility

-An edge correspondence
-Corresponded edges surround in reverse order
-Corresponded edges have similar length

Candidate Trunk Pair

-The angel relationships for reversible shapes:

$$
\begin{aligned}
& 2 \pi-\theta_{i}-\alpha_{i}=\alpha_{i}^{\prime}, \\
& 2 \pi-\theta_{i}^{\prime}-\alpha_{i}^{\prime}=\alpha_{i}
\end{aligned}
$$

Trunk Pair Selection

-The angle errors for approximate reversible shapes:

$$
\begin{aligned}
& 2 \pi-\theta_{i}-\alpha_{i}=\alpha_{i}^{\prime}-\boldsymbol{\beta}^{\prime}, \\
& 2 \pi-\theta_{i}^{\prime}-\alpha_{i}^{\prime}=\alpha_{i}+\boldsymbol{\beta},
\end{aligned}
$$

Candidate Trunk Pair
 \qquad Trunk Pair Selection

Three criteria
-Edge conjugacy
-Angle reversibility

- Area reversibility

Area(gaps) + Area(overlaps)

Candidate Trunk Pair

\qquad Trunk Pair Selection

Three criteria
-Edge conjugacy
-Angle reversibility
-Area reversibility

Cross-Reversibility Score (CRS)

$$
\begin{gathered}
C R S\left(T, T^{\prime}\right)=\max _{i=0, \ldots, n-1} \min \left\{S_{E}^{i}, S_{\llcorner }^{i}, S_{A}^{i}\right\} \\
C R S(P, Q)=\max _{\left\{\left(T, T^{\prime}\right)\right\}} \operatorname{CRS}\left(T, T^{\prime}\right)
\end{gathered}
$$

Approximate Construction Overview

Quick RIOT Exploration

Candidate Trunk Pair

(a3)

Fabrication

Boundary Deformation - Approximate RIOT

Boundary Deformation - Conjugate Trunks Adjustment

T_{P} and T_{Q} are fixed

Boundary Deformation

Transformed curves are deformed by 2D Laplacian editing*

(1)

Boundary Deformation - User Assistance

Sponsored by

Boundary Deformation

User Assistance

(a)

(b)

(c1)

(c2)

(d)

Approximate Dissections. Duncan et al. ACM Trans. on Graph., 2017.

Texture and Fabrication

A telescopic structure can be used to lift a piece up, rotate it, and place it back to its base plane

Texture and Fabrication

 Automatic Texture Transfer

 Automatic Texture Transfer}

Available input texture

triangle meshing

Deformed mesh

Deformed texture

Results And Evaluation

Silhouette Image Collection

* Two public silhouette image datasets
 - MPEG-7 database
 http://www.dabi.temple.edu/~shape/MPEG7/dataset.html
 - Animal database
 https://sites.google.com/site/xiangbai/animaldataset
 - 81 shape classes and 3,400 shapes in total
 Other images found online

Silhouette Image Pre-processing

input silhouette image

fill interior holes

Silhouette Image Pre-processing

input silhouette image

extract a single closed contour

area normalization

Silhouette Image Pre-processing

input silhouette image

extract a single closed contour

adaptive sampling

Parameters

- Default parameter setting
- Sampling distance for candidate vertices $d_{\text {space }}=\frac{\mathrm{L}^{c}}{15}$
- Distance tolerance for boundary simplification $\tau_{s}=0.1$
- Threshold for congruency score $\tau_{\mathrm{c}}=0.3$
- Variances for reversibility score $\sigma_{\mathrm{PA}}=1, \sigma_{\mathrm{W}}=4$

Exact RIOT pairs manually designed by Jin Akiyama

Parameters

\square Default parameter setting

- Sampling distance for candidate vertices $d_{\text {space }}=\frac{\mathrm{L}^{c}}{15}$
- Distance tolerance for boundary simplification $\tau_{s}=0.1$
- Threshold for congruency score $\tau_{\mathrm{c}}=0.3$
- Variances for reversibility score $\sigma_{\mathrm{PA}}=1, \sigma_{\mathrm{W}}=4$

The large shape collection combing two public datasets

Timing

- MATLAB implement on a 4 GHz desktop
- Average time
- $0.12 \mathrm{~s} /$ shape for QRS
- 1.99s/pair for QCRS
- $10.36 \mathrm{~s} /$ shape for candidate trunks
- $11.90 \mathrm{~s} /$ pair for candidate conjugate trunks
- 2.19 minutes per pair for boundary deformation

Results Gallery

crocodile and the Crocs shoe

cat and mouse

QCRS Evaluation

How consistent it is with respect to CRS

- 1000 random pairs of shape pairs
- Ranking consistency between QCRS and CRS

$\operatorname{QCRS}\left(P_{1}, Q_{1}\right) \quad \geq / \leq \quad \operatorname{QCRS}\left(P_{2}, Q_{2}\right)$
 $\operatorname{CRS}\left(P_{1}, Q_{1}\right) \quad \geq / \leq \quad \operatorname{CRS}\left(P_{2}, Q_{2}\right)$

QCRS Evaluation

How consistent it is with respect to CRS

- 1000 random pairs of shape pairs
- Ranking consistency between QCRS and CRS

Ranking consistency: 77.4\%

Comparisons With Manual Designs

Nine manually designed pairs

D Success for seven pairs
Fail for two pairs (too complex boundaries)

Our automatic RIOT solutions (right) are almost the same with manual designs (left).

Application: Real Sofa Design

The Borghese sofa

Fabricated prototypes using a 3D printer

Application: 3D Sofa Design

A 3D input sofa is partitioned into parallel thick slices

Output deformed sofa

Two possible sofa configurations: double sofa \& a loveseat

Conclusions

, First approximate RIOT problem
Fully automatic RIOT construction algorithm
A quick RIOT exploration tool
Numerous fascinating RIOT result pairs

Limitations

Conjugate trunks —— only a sufficient condition
 Limited types of trunks*

Failures on shapes with excessive boundary complexity \dagger

*Reversible nets of polyhedral. Akiyama et al.. In Japanese Conference on Discrete and

\dagger Treks into Intuitive Geometry. Jin Akiyama and Kiyoko Matsunaga. 2015. Springer.

Future Work

More difficult dissection puzzles

Extension to 3D shapes*

*Treks into Intuitive Geometry. Jin Akiyama and Kiyoko Matsunaga. 2015. Springer.

Acknowledgements

- All Authors
- Prof. Richard Bartels
- Dr. Kai Yang
- Dr. Akshay Gadi Patil
- Anonymous reviewers
- Funds

SIGGIN1PH
ASIA 2918
CONFERENCE 4-7 December 2018 EXHIBITION 5-7 December 2018 Tokyo International Forum, Japan SA2018.SIGGRAPH.ORG

THANK YOU!

Q\&A

Project homepage

http://vcc.szu.edu.cn/research/2018/RIOT

Appendix

Sponsored by

Candidate Trunk Pair _ Selecting Candidate Vertices

Two criteria

-Boundary Congruency

- Area Compatibility

Visible Region (VR)
Invisible Region (IVR)
Convex trunk T

Area(T) and Area(T's exterior pieces) are incompatible.

Candidate Trunk Pair

Selecting Candidate Vertices

$$
\begin{aligned}
& S_{b}(p)= \begin{cases}0, & \text { if } \sum_{i} \operatorname{Area}\left(I V R_{i}(p)\right) \geq \operatorname{Area}(V R(p) \text {-Circle }), \\
0, & \text { if } L\left(I V R_{i}(p)\right) \geq L / 2, \\
1, & \text { otherwise. }\end{cases} \\
& S_{c}(p)= \begin{cases}0, & \text { if } L\left(C_{l}^{p}\right)+L\left(C_{r}^{p}\right) \leq 0.03 L,\end{cases} \\
& \exp \left(-\frac{d_{c}^{2}\left(C_{l}^{p}, C_{r}^{p}\right)}{2 \sigma_{c}^{2}}\right), \\
& \text { otherwise, }
\end{aligned}
$$

Candidate Trunk Pair Generating Candidate Trunks

The upper bound \boldsymbol{K} of trunk edges

$$
K=\# \mid \text { convex points } \mid
$$

Candidate Trunk Pair __Generating Candidate Trunks

The upper bound \boldsymbol{K} of trunk edges

$K=\# \mid$ convex points of simplified shape \mid

Quick Reversibility Scores (QRS)

Shapes from two classes and their QRS

Distribution of QRS and QCRS

