SA2018.SIGGRAPH.ORG

Construction and Fabrication of Reversible Shape Transforms

Shuhua Li^{1, 2}, Ali Mahdavi-Amiri¹, Ruizhen Hu³, Han Liu^{1, 4}, Changqing Zou⁵, Oliver Van Kaick⁴, Xiuping Liu², Hui Huang³, Hao Zhang¹

¹Simon Fraser University ²Dalian University of Technology ³Shenzhen University ⁴Carleton University ⁵University of Maryland, College Park

Geometric Dissection

The classic dissection between a square and a triangle by Henry Dudeney 1907

Ancient Dissection Puzzles

Tangram タングラム

Archimedes' Stomachion

Famous Questions And Theories

1807 Wallace-Bolyai-Gerwien Theorem

1900 Hilbert's Third Problem

2007 Hinged Dissections Exist

Wallace-Bolyai-Gerwien Theorem 1807

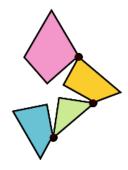
"One polygon can be cut into a finite number of pieces and rearranged into another polygon if and only if two polygons have the same area."

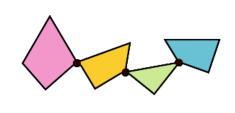
Hilbert's Third Problem 1900

"Is it always possible to cut one polyhedral into finitely many polyhedral pieces and recompose pieces to form another of equal volume?"

--David Hilbert 23 Jan· 1862 - 14 Feb· 1943

Hinged Dissections Exist 2007



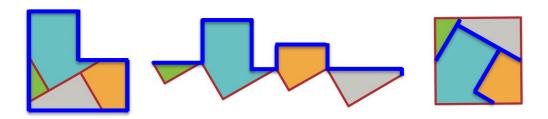


Two equal-area polygons must possess a hinged dissection*

*Hinged dissections exist. Abbott et al.. Discrete & Computational Geometry, 2012.

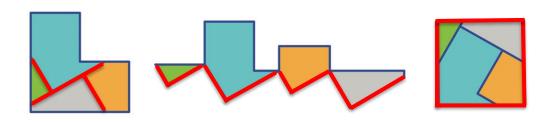
Reversible Hinged Dissections

Reversible inside-out transform (RIOT)*



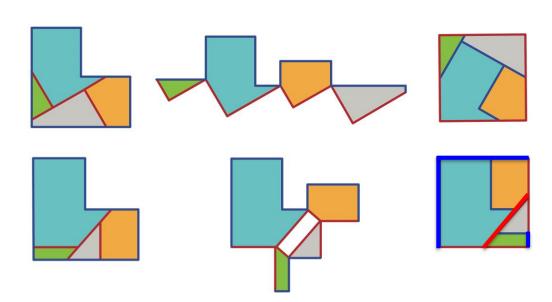
Reversible Hinged Dissections

Reversible inside-out transform (RIOT)*



Reversible Hinged Dissections

Reversible inside-out transform (RIOT)*



^{*}Hinged Dissections: Swinging and Twisting. Greg N. Frederickson. Cambridge University Press. 2002.

Our Motivations: RIOT Calls For More Attentions

No theories ensure that a RIOT always exists between shapes of equal area.

No RIOT construction schemes between general shapes.

Only a few manual RIOT designs between non-trivial shapes.

Our Work: From A Design And Modeling Perspective

A quick RIOT exploration tool

Fully automatic approximate RIOT construction

Fabrication to make collision-free assembly puzzles

Related Works in Computer Graphics

3D Decompose-and-assemble

- Dapper: Decompose-and-Pack for 3D Printing. Chen et al., ToG, 2015.
- Reconfigurable Interlocking Furniture. Song et al., ToG, 2017.

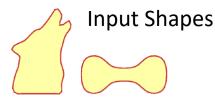
Approximate geometric dissections

- An Algorithm for Creating Geometric Dissection Puzzles. Zhou et al., In Proc. of Bridges Conf., 2012.
- Approximate Dissections. Duncan et al., ToG, 2017.

3D geometric puzzles

- Boxelization: folding 3D objects into boxes. Zhou et al., ToG, 2014.
- Computational Design of Twisty Joints and Puzzles. Sun et al., ToG, 2015.

The Most Related Work (2017)



Pieces

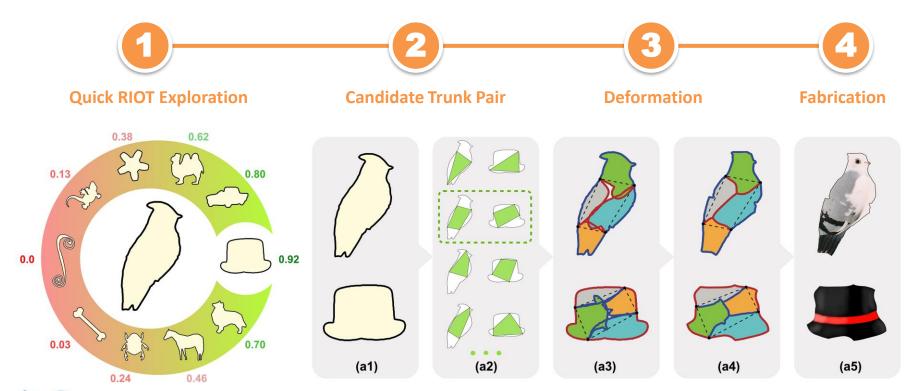
Similarities

- Natural shape pairs
- Approximate dissections
- User interaction
- Fabrication

Differences

- Different Problems
 Hinged & inside-out reversibility
- Different ApproachesConjugate trunks
- Additional Tool
 Quick RIOT exploration tool

Algorithm Overview

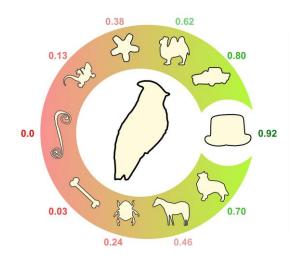


Quick RIOT Exploration

Quick Reversibility Scores (QRS) Of Shapes

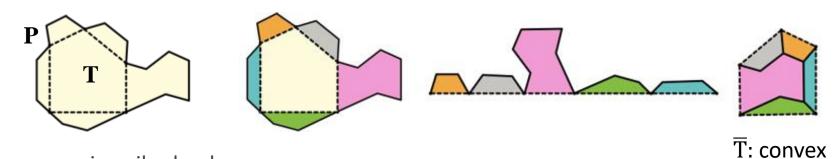


Quick Cross-Reversibility
Score (QCRS) Of Shape Pairs



Candidate Trunk Pair — What is Trunk?

A Trunk T of Shape P

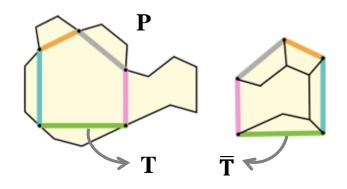


T: convex, inscribed polygon

Treks into Intuitive Geometry. Jin Akiyama and Kiyoko Matsunaga. 2015. Springer.

Candidate Trunk Pair — What is Trunk?

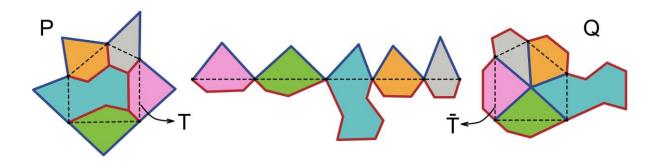
The Conjugate Trunk \overline{T}



- Two polygons sharing the same set of edges in reverse order are said to be conjugate.
- T and \overline{T} are conjugate trunks of P

Treks into Intuitive Geometry. Jin Akiyama and Kiyoko Matsunaga. 2015. Springer.

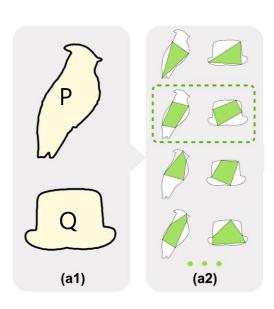
Candidate Trunk Pair — A Sufficient Condition



Two shapes have a RIOT, if they possess a pair of conjugate trunks*

*Treks into Intuitive Geometry. Jin Akiyama and Kiyoko Matsunaga. 2015. Springer.

Candidate Trunk Pair



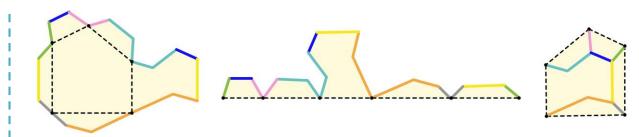
- Selecting Candidate Vertices
- Generating Candidate Trunks
- Trunk Pair Selection

Candidate Trunk Pair —— Selecting Candidate Vertices

Two criteria

Boundary Congruency

Area Compatibility



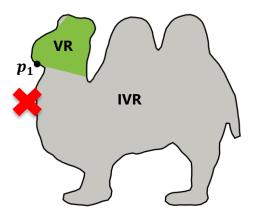
The boundary of a reversible shape can be divided into congruent segment pairs.

Candidate Trunk Pair —— Selecting Candidate Vertices

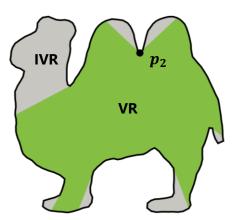
Two criteria

- Boundary Congruency
- Area Compatibility

Visible Region (VR)



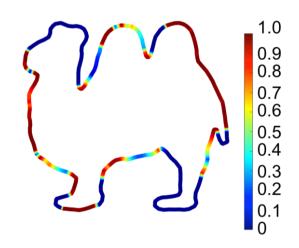
Invisible Region (IVR)



 $\sum_{i} Area(IVR_i(p)) < Area(VR(p)-Circle),$ VR(p)-Circle: A circle with the same perimeter as VR(p)

Candidate Trunk Pair —— Selecting Candidate Vertices

- \square Binary score $S_{\rm b}(p)$ to exclude points
- Criterion: Area Compatibility
- \Box Congruency score $S_c(p)$ for the remaining points
- Criterion: Boundary Congruency
- \square Candidate vertexes: $S_c(p) > 0.3$



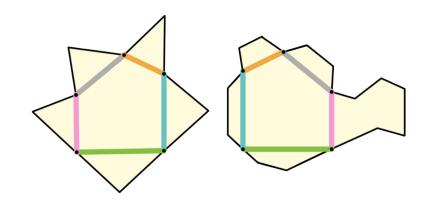
Candidate Trunk Pair — Generating Candidate Trunks

Candidate trunks

- A upper bound K of trunk edges (auto)
- From triangles to *K*-gons
- Heuristic conditions: inscribed, convex, boundary congruency, and area for fabrication

Three criteria

- Edge conjugacy
- Angle reversibility
- Area reversibility

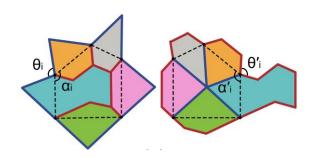


- An edge correspondence
- Corresponded edges surround in reverse order
- Corresponded edges have similar length

Three criteria

- Edge conjugacy
- Angle reversibility
- Area reversibility

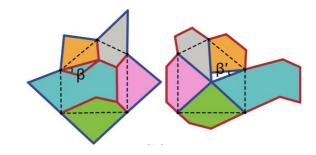
■The angel relationships for reversible shapes:



$$2\pi - \theta_i - \alpha_i = \alpha_i' ,$$

$$2\pi - \theta_i' - \alpha_i' = \alpha_i$$

■The angle errors for approximate reversible shapes:

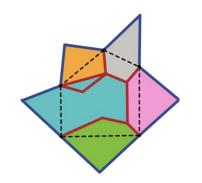


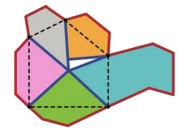
$$2\pi - \theta_i - \alpha_i = \alpha_i' - \beta',$$

$$2\pi - \theta_i' - \alpha_i' = \alpha_i + \beta$$

Three criteria

- Edge conjugacy
- Angle reversibility
- Area reversibility





Area(gaps) + Area(overlaps)

Three criteria

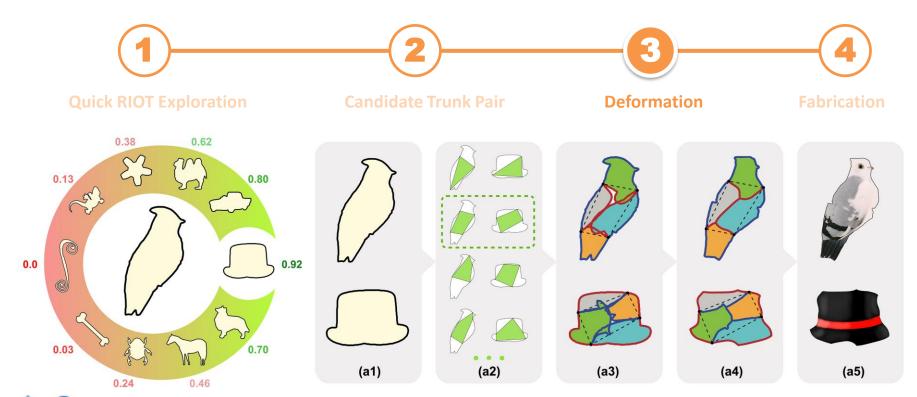
- Edge conjugacy
- Angle reversibility
- Area reversibility

Cross-Reversibility Score (CRS)

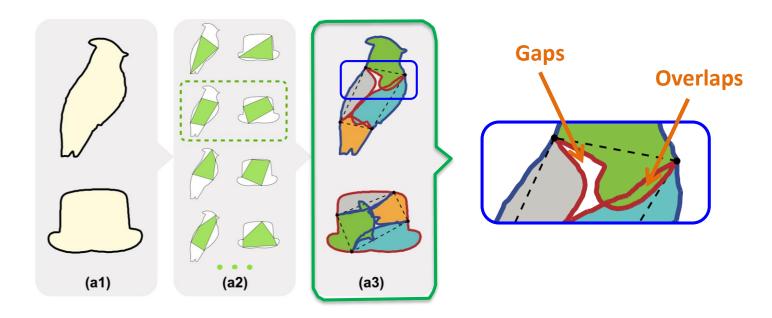
$$CRS(T, T') = \max_{i=0,...,n-1} \min\{S_E^i, S_{\angle}^i, S_A^i\}$$

$$CRS(P,Q) = \max_{\{(T,T')\}} CRS(T,T')$$

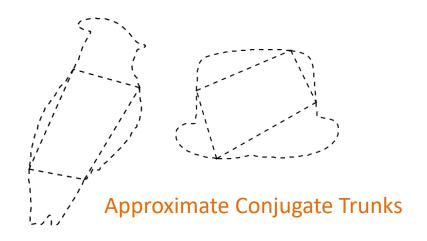
Approximate Construction Overview

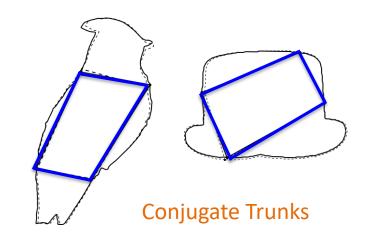


Boundary Deformation — Approximate RIOT



Boundary Deformation — Conjugate Trunks Adjustment

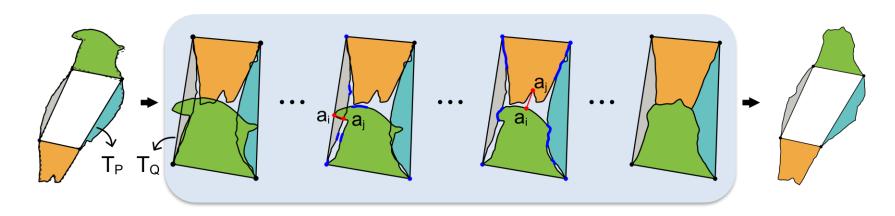




 T_P and T_Q are fixed

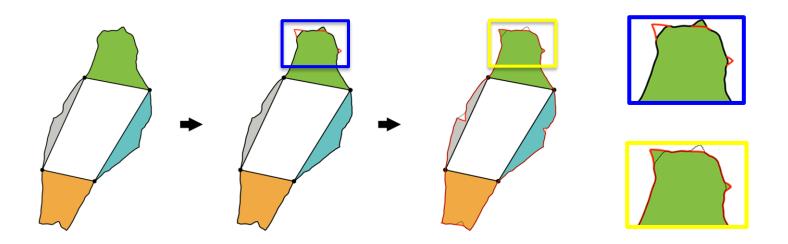
Boundary Deformation

Transformed curves are deformed by 2D Laplacian editing*



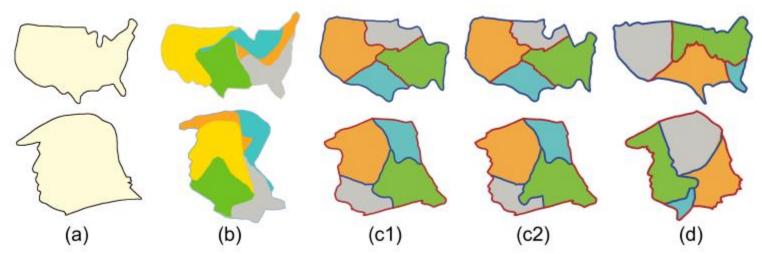
^{*}Laplacian surface editing. Sorkine et al.. In Proceedings of the 2004 Eurographics/ACMSIGGRAPH symposium on Geometry processing.

Boundary Deformation — User Assistance



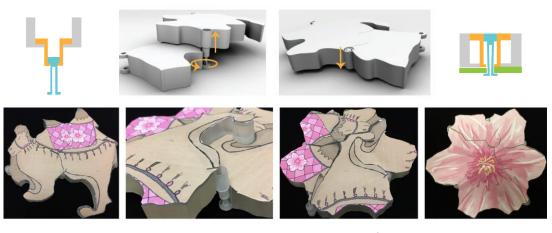
Boundary Deformation

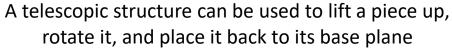
— User Assistance



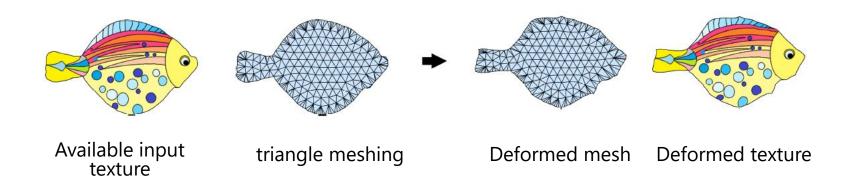
Approximate Dissections. Duncan et al., ACM Trans. on Graph., 2017.

Texture and Fabrication





Texture and Fabrication — Automatic Texture Transfer



Results And Evaluation

Silhouette Image Collection

Two public silhouette image datasets

MPEG-7 database

http://www.dabi.temple.edu/~shape/MPEG7/dataset.html

Animal database

https://sites.google.com/site/xiangbai/animaldataset

81 shape classes and 3,400 shapes in total

Other images found online

Silhouette Image Pre-processing

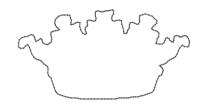
input silhouette image

fill interior holes

Silhouette Image Pre-processing

input silhouette image

extract a single closed contour

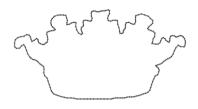


area normalization

Silhouette Image Pre-processing

input silhouette image

extract a single closed contour



adaptive sampling

Parameters

- Default parameter setting
- Sampling distance for candidate vertices $d_{space} = \frac{L^c}{15}$
- Distance tolerance for boundary simplification $\tau_s = 0.1$
- Threshold for congruency score $\tau_c = 0.3$
- Variances for reversibility score $\sigma_{PA} = 1$, $\sigma_{W} = 4$

Exact RIOT pairs manually designed by Jin Akiyama

Parameters

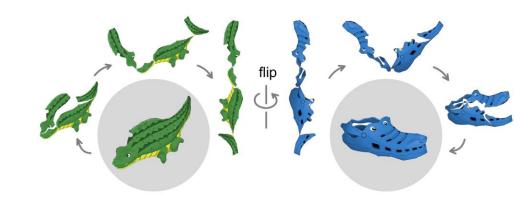
- Default parameter setting
- Sampling distance for candidate vertices $d_{space} = \frac{L^c}{15}$
- Distance tolerance for boundary simplification $\tau_s = 0.1$
- Threshold for congruency score $\tau_c = 0.3$
- Variances for reversibility score $\sigma_{PA} = 1$, $\sigma_{W} = 4$

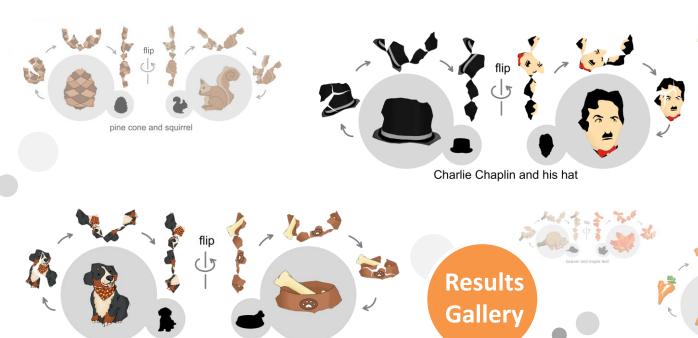
The large shape collection combing two public datasets

Timing

- ☐ MATLAB implement on a 4 GHz desktop
- Average time
- 0.12s/shape for QRS
- 1.99s/pair for QCRS
- 10.36s/shape for candidate trunks
- 11.90s/pair for candidate conjugate trunks
- 2.19 minutes per pair for boundary deformation

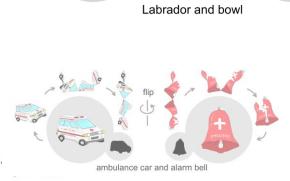
Results Gallery crocodile and the Crocs shoe

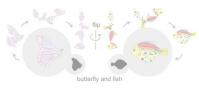


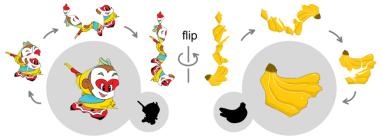




cat and mouse







Monkey king and banana

QCRS Evaluation

How consistent it is with respect to CRS

- 1000 random pairs of shape pairs
- Ranking consistency between QCRS and CRS

$$QCRS(P_1, Q_1) \ge / \le QCRS(P_2, Q_2)$$

$$CRS(P_1, Q_1)$$

$$\geq / \leq$$

$$CRS(P_1, Q_1) \ge / \le CRS(P_2, Q_2)$$

Consistent Ranking?

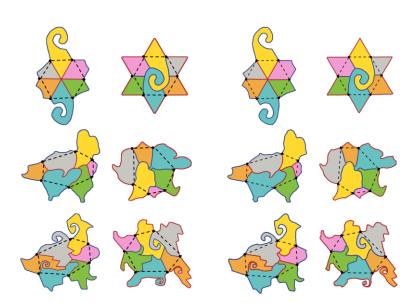
QCRS Evaluation

- How consistent it is with respect to CRS
- 1000 random pairs of shape pairs
- Ranking consistency between QCRS and CRS

Ranking consistency: 77.4%

Comparisons With Manual Designs

- Nine manually designed pairs
- Success for seven pairs
- Fail for two pairs (too complex boundaries)



Our automatic RIOT solutions (right) are almost the same with manual designs (left).

Application: Real Sofa Design

The Borghese sofa

The three back pieces of the Borghese sofa (left) can be transformed into different animals: bunny, bear, and fish (right)

Fabricated prototypes using a 3D printer

Application: 3D Sofa Design

A 3D input sofa is partitioned into parallel thick slices

Output deformed sofa

The RIOT pairs for all the slices

Two possible sofa configurations: double sofa & a loveseat

Conclusions

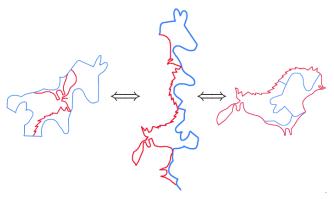
- First approximate RIOT problem
- Fully automatic RIOT construction algorithm
- A quick RIOT exploration tool
- Numerous fascinating RIOT result pairs

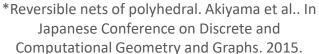
Limitations

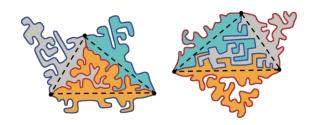
Conjugate trunks —— only a sufficient condition

Limited types of trunks*

Failures on shapes with excessive boundary complexity†





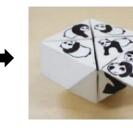


†Treks into Intuitive Geometry. Jin Akiyama and Kiyoko Matsunaga. 2015. Springer.

Future Work

More difficult dissection puzzles

Extension to 3D shapes*



*Treks into Intuitive Geometry. Jin Akiyama and Kiyoko Matsunaga. 2015. Springer.

Acknowledgements

- All Authors
- Prof. Richard Bartels
- Dr. Kai Yang
- Dr. Akshay Gadi Patil
- Anonymous reviewers
- Funds

CONFERENCE 4 – 7 December 2018 EXHIBITION 5 – 7 December 2018 Tokyo International Forum, Japan SA2018.SIGGRAPH.ORG

THANK YOU!

Q&A

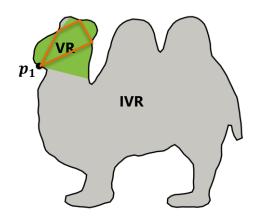
Project homepage http://vcc.szu.edu.cn/research/2018/RIOT

Appendix

Candidate Trunk Pair —— Selecting Candidate Vertices

Two criteria

- Boundary Congruency
- Area Compatibility



Visible Region (VR)

Invisible Region (IVR)

Convex trunk T

Area(T) and $Area(T's\ exterior\ pieces)$ are incompatible.

Candidate Trunk Pair —— Selecting Candidate Vertices

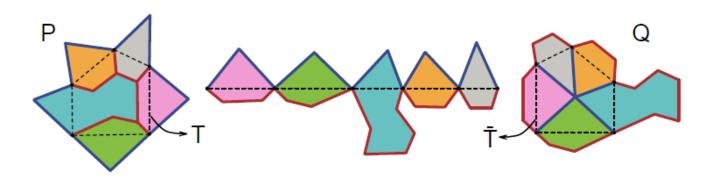
$$S_b(p) = \begin{cases} 0, & \text{if } \sum_i \operatorname{Area}(IVR_i(p)) \geq \operatorname{Area}(VR(p)\text{-Circle}), \\ 0, & \text{if } L(IVR_i(p)) \geq L/2, \\ 1, & \text{otherwise}. \end{cases}$$

$$S_c(p) = \begin{cases} 0, & \text{if } L(C_l^p) + L(C_r^p) \le 0.03L, \\ exp\left(-\frac{d_c^2(C_l^p, C_r^p)}{2\sigma_c^2}\right), & \text{otherwise,} \end{cases}$$



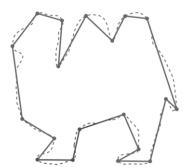
Candidate Trunk Pair — Generating Candidate Trunks

The upper bound \boldsymbol{K} of trunk edges



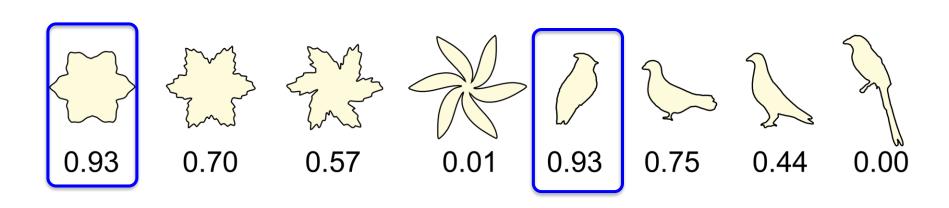
Candidate Trunk Pair — Generating Candidate Trunks

The upper bound K of trunk edges



 $K = \#|convex\ points\ of\ simplified\ shape|$

Quick Reversibility Scores (QRS)



Shapes from two classes and their QRS

Distribution of QRS and QCRS

