Position-Free Monte Carlo Simulation for Arbitrary Layered BSDFs

Yu Guo Miloš Hašan Shuang Zhao

University of California, Irvine Autodesk (now at Adobe) University of California, Irvine

Layered Materials

Metal Wood Plastic Ceramics Glass

Ceramic pot

Ceramic pot

Ceramic pot

Prior Work

[Weidlich and Wilkie, 2007]

[Belcour, 2018]

Prior Work

Benefits of Our Work

"Reference" solution

Spatially variance & Arbitrary layer properties

Faster than standard Monte Carlo methods

Our Contribution

Position-free formulation

 $L(z, \boldsymbol{\omega})$

Monte Carlo estimators

Results (Preview)

Our Method

Position-Free Monte Carlo Simulation for Arbitrary Layered BSDFs

Layer Configuration

Position-Free Formulation

Light enters the layer from one given direction

Position-Free Formulation

Position-Free Formulation

Standard Radiative transfer equation

$$L_{v}(\boldsymbol{r},\boldsymbol{\omega}) = S(\boldsymbol{r},\boldsymbol{\omega}) + \int_{0}^{t'} \overline{\tau(\boldsymbol{r},\boldsymbol{r}')} \int_{S^{2}} \widehat{f}_{p}(\boldsymbol{\omega}',\boldsymbol{\omega}) L_{v}(\boldsymbol{r}',\boldsymbol{\omega}') \,\mathrm{d}\boldsymbol{\omega}' \,\mathrm{d}t$$

Transmittance

Scaled phase function

Position-free radiative transfer equation

$$L_{v}(z, \boldsymbol{\omega}) = S(z, \boldsymbol{\omega}) + \int_{0}^{1} \frac{\tau(z', z, \boldsymbol{\omega})}{|\cos \boldsymbol{\omega}|} \int_{S^{2}} \hat{f}_{p}(\boldsymbol{\omega}', \boldsymbol{\omega}) L_{v}(z', \boldsymbol{\omega}') \, \mathrm{d}\boldsymbol{\omega}' \, \mathrm{d}z'$$

Change of variable

BSDF Value as Path Integral

Position-free light path: $\bar{x} = (d_0, z_1, d_1, \dots, z_k, d_k)$

Layered BSDF value:

 $f_l(oldsymbol{\omega}_{
m i},oldsymbol{\omega}_{
m o})$

 $\Omega(\boldsymbol{\omega}_{\mathrm{i}}, \boldsymbol{\omega}_{\mathrm{o}})$: the space of all paths with $\boldsymbol{d}_{0} = -\boldsymbol{\omega}_{\mathrm{i}}, \boldsymbol{d}_{k} = \boldsymbol{\omega}_{\mathrm{o}}$

BSDF Value as Path Integral

Key Operations for BSDF Model

 $\omega_{
m o}$

Sample(ω_i): Eval(ω_i, ω_o): pdf($\omega_o | \omega_i$): ω_i ω_i f_l ω_i f_l

Returns randomly drawn $\omega_{
m o}$ given $\omega_{
m i}$

Evaluate the BSDF value given $\omega_{\rm i}, \omega_{\rm o}$

Returns the probability density for drawing $\omega_{\rm o}$ given $\omega_{\rm i}$

Layered BSDFs Sampling

Start a ray with direction $-\boldsymbol{\omega}_{\mathrm{i}}$

Ray travels in the layers

Return its final direction as $\omega_{
m o}$ when ray leaves

Key Operations for BSDF Model

 $\mathrm{Eval}(\boldsymbol{\omega}_{\mathrm{i}}, \boldsymbol{\omega}_{\mathrm{o}})$:

 $\mathrm{pdf}(oldsymbol{\omega}_{\mathrm{o}}|oldsymbol{\omega}_{\mathrm{i}})$:

Returns randomly drawn $\omega_{
m o}$ given $\omega_{
m i}$

Sample(ω_i):

Evaluate the BSDF value given $\omega_{\mathrm{i}}, \omega_{\mathrm{o}}$

Returns the probability density for drawing $\omega_{
m o}$ given $\omega_{
m i}$

Layered BSDFs Evaluation

Position-free path integral:

 $f_l(\boldsymbol{\omega}_{\mathrm{i}}, \boldsymbol{\omega}_{\mathrm{o}}) = \int_{\Omega(\boldsymbol{\omega}_{\mathrm{i}}, \boldsymbol{\omega}_{\mathrm{o}})} f(\bar{x}) \mathrm{d}\mu(\bar{x})$

Challenge: No analytical solution **Solution**: Monte Carlo integration

- Unidirectional estimator
- Bidirectional estimator

Challenges

Forward sampling does not work

since the final direction will not be exactly $\omega_{
m o}$

Next-event estimation

- Challenge: refractive boundaries
- Solution: sample one-step from the other direction

Next-event estimation

- Challenge: refractive boundaries
- Solution: sample one-step from the other direction

Next-event estimation

- Challenge: refractive boundaries
- Solution: sample one-step from the other direction

 $Next\text{-}event\ \text{estimation}$

Path continuation

Next-event estimation

Path continuation

Combined using multiple importance sampling (MIS)

Similar to traditional BDPT

Infinitely many connections between z_2 and z_2 '

Similar to traditional BDPT

Infinitely many connections between z_2 and z_2 '

Similar to traditional BDPT

Infinitely many connections between z_2 and z_2 '

Similar to traditional BDPT

Infinitely many connections between z_2 and z_2 '

Similar to traditional BDPT

Infinitely many connections between z_2 and z_2 '

Similar to traditional BDPT

Infinitely many connections between z_2 and z_2 '

Similar to traditional BDPT

Infinitely many connections between z_2 and z_2 '

Similar to traditional BDPT

Infinitely many connections between z_2 and z_2 '

Basic Operations for a BSDF Model

 $Eval(\boldsymbol{\omega}_i, \boldsymbol{\omega}_o)$: Sample(ω_i):

 $pdf(\boldsymbol{\omega}_{o}|\boldsymbol{\omega}_{i})$:

Returns randomly drawn $\omega_{\rm o}$ given $\omega_{\rm i}$

Evaluate the BSDF value given ω_{i}, ω_{o}

Returns the probability density for drawing ω_0 given ω_i

PDF Evaluation

- Can be modeled as another path integral
- Unbiased method (slow)
 - Similar to our BSDF evaluation
- Approximated method (fast)
 - Neglects layer medium and limits max. path length
 - Good enough for computing MIS weights
- Both lead to unbiased global rendering

PDF Evaluation

PDF Evaluation for MIS

no MIS

MIS + unbiased pdf (14min)

MIS + approx. pdf (4min)

Images rendered with equal spp

Key Operations for BSDF Model

Sample($\boldsymbol{\omega}_i$):

 $\mathrm{Eval}(\boldsymbol{\omega}_{\mathrm{i}}, \boldsymbol{\omega}_{\mathrm{o}})$:

 $\mathrm{pdf}(\omega_{\mathrm{o}}|\omega_{\mathrm{i}})$:

Returns randomly drawn ω_{o} given ω_{i} EASY!

Evaluate the BSDF value given ω_i, ω_o MC (unidir. & bidir.) Returns the probability density for drawing $\omega_{\rm o}$ given $\omega_{\rm i}$ MC (unbiased & approximated)

Results

Position-Free Monte Carlo Simulation for Arbitrary Layered BSDFs

Equal-Time Comparison

Converge faster!

Generality Comparison

Spatial variation

Volumetric scattering

Anisotropic reflectance Anisotropic scattering

Generality Comparison

	Anal	lytic	mode	els
--	------	-------	------	-----

 [Weidlich and Wilkie, 2007] 	Approx	No	No	No
• [Belcour, 2018]	Yes	Yes	No	No
 Discretized models 				
• [Jakob et al., 2014]	Costly	Yes	No	No
 [Zeltner and Jakob, 2018] 	Costly	Yes	Yes	No
• Ours	Yes	Yes	Yes	Yes

Performance

Top vs Bottom

(a)	(b)	(c)

Absorption only medium	Absorption only medium	Absorption only medium
Conductor (Cu)	Conductor (Cu)	Conductor (Cu)

Reflection and Transmission

Anisotropic Layer Media

Homogeneous anisotropic (microflake) medium

Diffuse

Multiple layers

Summary

What we proposed

A new layered BSDF model

Monte Carlo simulations of light transport in flat slabs

Position-free path formulation

Key benefits

Unbiased BSDF estimation

Full generality in layer/interface properties

Run faster than explicitly method

Position-Free Monte Carlo Simulation for Arbitrary Layered BSDFs

Performance

85	Image size	Spp	Render time Unidir. Bidir.		Trivial			
Fig. 1 (a)	3000×2000	1024	2.5 h	(25 m)	2.2 h	(22 m)	38 m	(6.3 m)
Fig. 11 (b)	1024×1024	256	2.2 m	(2.1 m)	2.6 m	(2.5 m)	1.3 m	(1.2 m)
Fig. 12, top	800×1200	512	15.2 m	(7.9 m)	24 m	(12.5 m)	2.4 m	(1.3 m)
Fig. 12, bot.	512×512	1024	6.4 m	(6.1 m)	13 m	(12.6 m)	1.6 m	(1.5 m)
Fig. 13 (a)	876×584	256	1.1 m	(2.2 m)	1.4 m	(2.7 m)	0.6 m	(1.1 m)
Fig. 13 (b)	876×584	256	1.1 m	(2.2 m)	1.4 m	(2.7 m)	0.5 m	(0.9 m)
Fig. 13 (c)	876×584	256	2.5 m	(4.9 m)	5.4 m	(10.5 m)	0.5 m	(0.9 m)
Fig. 14 (b)	640×540	256	1.5 m	(4.3 m)	1.9 m	(5.5 m)	0.5 m	(1.4 m)
Fig. 15 (a)	1200×1400	256	6.7 m	(4.0 m)	12 m	(7.1 m)	3.7 m	(2.2 m)
Fig. 15 (b)	1200×1400	256	7.0 m	(4.2 m)	13 m	(7.7 m)	3.7 m	(2.2 m)
Fig. 15 (c)	1200×1400	256	67 m	(40 m)	20 m	(12 m)	4.7 m	(2.8 m)

White furnace tests

