Seeing the Unseen: Comprehensive 3D Scene Understanding

Shuran Song

Princeton —> Google —> Columbia

Partial Observation of the Environment

Complete Representation of the 3D Scene

Partial Observation of the Environment

Complete Representation of the 3D Scene

Challenge: Partial Observation

Challenge: Partial Observation

Sensors

Partial Observation

Challenge: Partial Observation

Occlusion

Limited Camera FOV

Partial Observation

Complete 3D Scene

Beyond FoV [Song et al. CVPR'18]

- Semantics Category
- •3D Location, Size
- Detailed Geometry
- Inter-Object Relationships
- Not Limited by FoV
- Action Affordances
- Phys. Properties ...

Object Detection

2D Visible (Modal) Surface

Traditional Object Detection Output

Aubry et al. CVPR'14 Dalal and Triggs CVPR'05 Felzenszwalb et al. CVPR'08 Bo et al. CVPR'2011 Malisiewicz et al. ICCV'11 Girshick et al. CVPR'14 Ren et al. NIPS'15 Girshick, ICCV'15 Everingham et al. IJCV'10 He et al. ICCV'17 Liu et al. ECCV'16 Erhan et al. CVPR'14 He et al. ECCV'14 Szegedy NIPS'13

Where to sit?

Object Detection

2D Visible (Modal) Surface

chair

Traditional Object Detection Output

3D Complete (Amodal) Shape

This work

<u>S. Song</u> and J. Xiao, Sliding Shapes for 3D Object Detection in Depth Images, ECCV 2014 <u>S. Song</u> and J. Xiao, Deep Sliding Shapes for Amodal 3D Object Detection in RGB-D Images, CVPR 2016

Deep Sliding Shapes

Output: 3D Bounding Box

Input: Kinect Depth Image

3D Deep learning

Representation: 3D vs. 2D

Advantage: Exploiting Physical Size

2D Sliding Window

Multi-scale searching

Physical size

Advantage: Handling Occlusion

2D Sliding window

3D Sliding window

Using depth, we can know which part is **occluded**. In 3D, we can separate the object from the **occluder**.

Advantage: Insensitivity to Lighting

Color based detector: miss

Sliding Shapes

Results: Deep Sliding Shapes

Output: 3D Amodal Boxes

Input: Single RGB-D

Results: Deep Sliding Shapes

Input: Single RGB-D

Output: 3D Amodal Boxes

- Semantics Category
- •3D Location, Size
- Detailed Geometry
- Inter-Object Relationships
- Not Limited by FoV
- Action Affordances
- Phys. properties ...

•Only Boxes, No Detailed Geometry

Not sufficient

- ✓ Semantics Category✓ 3D Location, Size
- Detailed Geometry
- Inter-Object Relationships
- Not Limited by FoV
- Action Affordances
- Phys. properties ...

- •Only Boxes, No Detailed Geometry
- Single Object, No Contextual Information

- ✓ Semantics Category
- ✓ 3D Location, Size
- Detailed Geometry
- Inter-Object Relationships
- Not Limited by FoV
- Action Affordances
- Phys. properties ...

- ✓ Semantics Category
- ✓3D Location, Size
- Detailed Geometry
- Inter-Object Relationships
- Not Limited by FoV
- Action Affordances
- Phys. properties ...

CompStem3DtStrSctene € Objptettidentities

Input: Single Depth Map

Output: Volumetric Occupancy + Semantic

Song et al. Semantic Scene Completion from a Single Depth Image. CVPR'17

3D Scene

3D Scene

3D Scene

Simultaneously predict voxel occupancy and semantics classes by a single forward pass.

Receptive field: 2.26

Normal kernel

Train on Synthetic 3D Scenes

Synthetic Scenes (SUNCG)

Depth

Ground Truth
Testing on Real-Word Data (NYU [1,2])

[1] NYU depth v2: Silberman et al. ECCV'12[2] Ground truth: Guo and Hoiem IJCV'15

Observed Surface

Observed Surface

Shape Completion without Semantics [Firman et al. CVPR'16]

Data-Driven 3D Scene Understanding

Prediction is limited by Camera Field of View

- ✓ Semantics Category
- √3D Location, Size
- ✓ Detailed Geometry
- ✓ Inter-Object Relationships
- Not Limited by FoV
- Action Affordances
- Phys. properties ...

Limited Camera FoV

 Typical camera
 Small Portion of the Scene is

 FoV 60 degree
 Observed due to Limited FoV

 Image: Comparison of the Scene is
 Image: Comparison of the Scene is

 Image: Comparison of the Scene is
 Image: Comparison of the Scene is

 Image: Comparison of the Scene is
 Image: Comparison of the Scene is

 Image: Comparison of the Scene is
 Image: Comparison of the Scene is

 Image: Comparison of the Scene is
 Image: Comparison of the Scene is

 Image: Comparison of the Scene is
 Image: Comparison of the Scene is

 Image: Comparison of the Scene is
 Image: Comparison of the Scene is

 Image: Comparison of the Scene is
 Image: Comparison of the Scene is

 Image: Comparison of the Scene is
 Image: Comparison of the Scene is

 Image: Comparison of the Scene is
 Image: Comparison of the Scene is

 Image: Comparison of the Scene is
 Image: Comparison of the Scene is

 Image: Comparison of the Scene is
 Image: Comparison of the Scene is

 Image: Comparison of the Scene is
 Image: Comparison of the Scene is

 Image: Comparison of the Scene is
 Image: Comparison of the Scene is

 Image: Comparison of the Scene is
 Image: Comparison of the Scene is

 Image: Comparison of the Scene is
 Image: Comparis
<

Data-Driven 3D Scene Understanding

Beyond FoV [song et al. CVPR'18]

- ✓ Semantics Category
- √3D Location, Size
- ✓ Detailed Geometry
- ✓ Inter-Object Relationships
- Not Limited by FoV
- Action Affordances
- Phys. properties ...

View Extrapolation

Prior work: Predicting Scene Appearance (Only Colored Pixels)

View Extrapolation

Input: RGB-D images

Output1: 3D Structures

Output2: Semantics

View Extrapolation

Output2: Semantics

Semantic-Structure View Extrapolation

Input: RGB-D images

Semantic-Structure View Extrapolation

Input: RGB-D images

Output: 360° panorama with 3D structure & semantics

Semantic-Structure View Extrapolation

Input: RGB-D images

Output: 360° panorama with 3D structure & semantics

Key idea

Key idea: Indoor environments are often highly structured.

By learning over the statistics of many typical scenes, the model should be able to leverage **strong contextual cues** inside the image to predict what is beyond the FoV.

Training data

3D House Datasets

Synthetic Houses (SUNCG):

58,866 RGB-D panoramas Pre-train

Real-Word Houses (Matterport3D):

5,315 RGB-D panoramas Fine-tune and test

360 Degree FoV

Color Panorama

Depth Panorama

3D Room

Plane Distance to Origin (p)

Depth Panorama

Surface Normal (a,b,c)

Plane Distance to Origin (p)

- ✓ Pixels on the same planar surface share the same plane equation.
- ✓ Representation is piecewise constant in a typical indoor environment.

Im2Pano3D Network

What training objectives should we use?

Ground truth

Every Pixel is	Similar Scene	Prediction is
Correct	Attribute	Plausible
L_{recon}	$L_{attribute}$	L_{adv}

$$L = \lambda_1 L_{recon} + \lambda_2 L_{attribute} + \lambda_3 L_{adv}$$

Results

Results

Input Observation

Results

Results Ground truth Prediction Bed Window-Object ceiling wall floor window bed door cabinet chair sofa tv bable object furniture

Results Ground truth Prediction Bed Window-Object ceiling wall floor e window bed door cabinet chair sofa tv bable object furniture

Results Ground truth Prediction Bed Window-Object ceiling wall floor e window bed door cabinet chair e sofa tv table object furniture

Results Ground truth Prediction Bed Window-Object ceiling wall floor e window bed door cabinet chair sofa tv bable object furniture
Results

Input Observation

Results

Camera Configurations in real platforms

Device

Camera Configurations

Advances Towards 3D Scene Understanding

Advances Towards 3D Scene Understanding

Passive Observers

Active Explorers

•

Richer Representation through Interaction

Active Exploration Inference Im2Pano3D) **Partial Observation** Guide Improve **3D Scene Prior Efficient exploration** + Most useful observation

Richer Representation through Interaction

Active Exploration

Partial Observation

3D Scene Prior

Efficient exploration + Most useful observation

Actions: Poking, Grasping

Physical properties: Surface material Friction coefficient

Active physical Interaction

Richer Representation through Interaction

Active Exploration

Partial Observation

3D Scene Prior

Efficient Exploration + Most useful observation

Active physical Interaction

Actions: Pushing, Grasping

Physical properties: Surface material Friction coefficient Actions: Tossing

Physical properties: Mass distribution, Aerodynamic

Comprehensive 3D Scene Understanding

Comprehensive 3D Scene Understanding

We are Image: Columbia 3D Image: Columbia 4D Image: Columbia 4D

Passive Observers

Active Explorer

Dynamics

• . . .

Acknowledgements

Collaborators

Ferran Alet Maria Bauza Angel Chang Nikhil Chavan Dafle Elliott Donlon Nima Fazeli Matthew Fisher Thomas Funkhouser Druck Green Leonidas Guibas Pat Hanrahan Francois R. Hogan Rachel Holladay Qixing Huang Hailin Jin Joon-Young Lee Zimo Li Melody Liu Weber Liu Daolin Ma

- Isabella Morona Prem Qu Nair Matthias Nießner Alberto Rodriguez Eudald Romo Silvio Savarese Manolis Savva Ari Seff Hao Su Orion Taylor
- Ian Taylor Zhirong Wu Jianxiong Xiao Li Yi Kuan-Ting Yu Fisher Yu Ersin Yumer Andy Zeng Linguang Zhang Yinda Zhang

Funding: NSF, Google, Intel, Facebook

Thank You!