Physical Scene Understanding with Compositional Structure

Jiajun Wu (MIT CSAIL)

GAMES Webinar, Jan 10, 2019

Advisors and Collaborators

Josh Tenenbaum

Tianfan Xue Ilker Yildirim Joseph Lim lun-Yan 7hu Katie Bouman Chengkai Zhang Yunzhu Li Harry Hsu Jiancheng Liu

Bill Freeman

Antonio Torralba

David Zheng Shaoxiong Wang Xingyuan Sun Qiujia Li Zhengjia Huang Yifan Wang Shunyu Yao Andrew Luo Yonglong Tian

Pushmeet Kohli

Josh McDermott Leslie Kaelbling Alberto Rodriguez Kevin Murphy Ted Adelson Russ Tedrake Daniela Rus Wojciech Matusik **Daniel Ritchie**

Andrew Owens Michael Janner Xiuming Zhang Anurag Ajay Nima Fazeli Zhoutong Zhang Wenzhen Yuan Maria Bauza James Traer Hongyi Zhang Yuanming Hu Yuandong Tian Tejas Kulkarni Andrew Spielberg Kevin Ellis

Erika Lu

Zhijian Liu

Chen Sun

What can we learn from this video?

Human Physical Scene Understanding

What can we see in this video?

- I. Scene structure (perception)
 - Object appearance (geometry, texture)
 - Physical properties (e.g., mass)
- II. Interactions and events (physics)
 - Collision, rolling, etc.
- III. Concepts and regularity (reasoning)
 - Balls can roll, but not blocks
 - Blocks are of the same size and shape
 - Blocks are lined up in a row

collisions

rolling

Current Machine Scene Understanding

Image Credit: DeepLab, Chen et al., 2018; CycleGAN, Zhu et al., 2017

Modeling the Physical World

- Object Intrinsics
 - Geometry
 - Physical properties
- Object Extrinsics
 - Position
 - Velocity
- Scene Descriptions
 - Lighting
 - Camera parameters

Modeling the Physical World

Modeling the Physical World

Physical World Representations are Universal

Visual Observation

Visual Observation

Cognitive Science Meets Machine Scene Understanding

Causal structure and cognitive science insights provide guidance on building machine scene understanding models:

- When and where to use top-down simulation engines vs. bottom-up neural networks?
- What training targets to use for neural networks?
- What intermediate representations to use?
- What training data to use?

Research in machine intelligence helps to stimulate research in human cognition and neuroscience:

- Computational models for human behaviors;
- Algorithms and representations in the brain.

Learning to See Physics via Visual De-animation

Wu, Lu, Kohli, Freeman, Tenenbaum. NeurIPS'17

Learning to See Physics via Visual De-animation

Wu, Lu, Kohli, Freeman, Tenenbaum. NeurIPS'17

Physical Scene Understanding

3D Reconstruction

Forward: image formation

Inverse: shape estimation Visible Surface Depth Estimation Shape Completion

MarrNet: 3D Reconstruction via 2.5D Sketches

Wu*, Wang*, Xue, Sun, Freeman, Tenenbaum. NeurIPS'17

Comparisons

Method	S	loU			
DRC 3D) [CVPR '1	7]	0.34		
MarrNet	-		0.38		
Intersection over Union (IoU)					
	DRC 3D	MarrNet	GT		
DRC 3D	50	26	17		
MarrNet	74	50	42		

	DRC 3D	Marmet	GI
DRC 3D	50	26	17
MarrNet	74	50	42
GT	83	58	50

Percentages of users that preferred the left approach to the top one

Results on PASCAL 3D+

Wu*, Wang*, Xue, Sun, Freeman, Tenenbaum. NeurIPS'17

Results on IKEA

Wu*, Zhang*, Zhang, Zhang, Freeman, Tenenbaum. ECCV'18

Ext. II: Generalization to Unseen Classes

Generalization to Novel Classes (Table, Boat, Sofa, Bench, Lamp)

Canonical Viewpoints in Generalization

Palmer, Rosch, Chase. Atten. Perform. 1981

Wu*, Zhang*, Xue, Freeman, Tenenbaum. NeurIPS'16

Zhu, Zhang, Zhang, Wu, Torralba, Tenenbaum, Freeman. NeurIPS'18

Ext. IV: Extension to Scenes

Goal: Recovering a structured, 3D-aware scene representation.

The structured representation allows re-rendering and editing the image.

3D Disentangled Scene Representation

Disentangled model for the scene's semantics, texture, and object geometry and 6DOF pose.

Yao*, Hsu*, Zhu, Wu, Torralba, Freeman, Tenenbaum. NeurIPS'18

Image Editing on Virtual KITTI

Original images

Edited images

Yao*, Hsu*, Zhu, Wu, Torralba, Freeman, Tenenbaum. NeurIPS'18

Image Editing on CityScapes (Real Images)

Original images

Edited images

Yao*, Hsu*, Zhu, Wu, Torralba, Freeman, Tenenbaum. NeurIPS'18

Physical Scene Understanding

- Learning to invert a graphics engine
 - Inferring fine object geometry
 - Learning structured shape representations (shape + texture)
 - Beyond single object, learning scene representations
- Learning to invert a physics engine

• Learning simulation engines themselves

Physical Scene Understanding

- Learning to invert a graphics engine
 - Inferring fine object geometry
 - Learning structured shape representations (shape + texture)
 - Beyond single object, learning scene representations
- Learning to invert a physics engine

• Learning simulation engines themselves

Wu*, Yildirim*, Lim, Freeman, Tenenbaum. NeurIPS'15

Results

Wu*, Yildirim*, Lim, Freeman, Tenenbaum. NeurIPS'15

Generative + Recognition Model

We've seen...

What about?

Learning Shape Abstractions

Tulsiani, Su, Guibas, Efros, Malik. CVPR'17

Physical Primitive Decomposition

Liu, Freeman, Tenenbaum, Wu. ECCV'18

Appearance + Physics

Aluminum (2.87g/ml) Oak (0.67g/ml)Steel (7.74g/ml) Pine (0.48g/ml) Visual Appearance Physics Trajectory

(Very Different)

(Very Similar)

Physical Primitive Decomposition

Liu, Freeman, Tenenbaum, Wu. ECCV'18

Physical Scene Understanding

- Learning to invert a graphics engine
 - Inferring fine object geometry
 - Learning structured shape representations (shape + texture)
 - Beyond single object, learning scene representations
- Learning to invert a physics engine
 - Inferring object physical properties
 - Joint modeling of object shape and physics
- Learning simulation engines themselves

Physical Scene Understanding

- Learning to invert a graphics engine
 - Inferring fine object geometry
 - Learning structured shape representations (shape + texture)
 - Beyond single object, learning scene representations
- Learning to invert a physics engine
 - Inferring object physical properties
 - Joint modeling of object shape and physics
- Learning simulation engines themselves

Key Features on Dynamics Modeling

- Depending on visual content
- Modeling uncertainty

Visual Dynamics

• Two temporally-consecutive frames

 $P(I_2|I_1)$: Probabilistic distribution of the second frame conditioned on the first frame

• Prediction

Xue*, Wu*, Bouman, Freeman. NeurIPS'16, TPAMI'18

Decomposing Objects into Independently Movable Parts

- Identify movable segments
- Model their dynamics
- Combine the sampled motion

Layered Cross-Convolutional Networks

Results on Real Videos

Instructions

Each time you will see two animated GIFs. One is taken from a real video, and the other is synthesized. You goal is to click on the GIF that you think is real.

Input

-7

Synthesized next frames

	% of synthetic labeled as real
Transfer flow	25.5
Ours	31.3

Visualize learned features

Feature maps

Feature maps

Interpretable Latent Representations

Xu*, Liu*, Sun, Murphy, Freeman, Tenenbaum, Wu. ICLR'19

Xu*, Liu*, Sun, Murphy, Freeman, Tenenbaum, Wu. ICLR'19

Xu*, Liu*, Sun, Murphy, Freeman, Tenenbaum, Wu. ICLR'19

Xu*, Liu*, Sun, Murphy, Freeman, Tenenbaum, Wu. ICLR'19

Ext II: Planning and Control

Janner, Levine, Freeman, Tenenbaum, Finn, Wu. ICLR'19

Ext II: Planning and Control

Li, Wu, Tedrake, Tenenbaum, Torralba. ICLR'19

Physical Scene Understanding

- Learning to invert a graphics engine
 - Inferring fine object geometry
 - Learning structured shape representations (shape + texture)
 - Beyond single object, learning scene representations
- Learning to invert a physics engine
 - Inferring object physical properties
 - Joint modeling of object shape and physics
- Learning simulation engines themselves
 - Learning object dynamics in the pixel space
 - Modeling object dynamics for control

Physical Scene Understanding with Compositional Structure

Goal

• Explaining and reasoning about data

Approach

• Leveraging causal structure to integrate generative, forward models with efficient inference algorithms.

Advantages

- 1. Guiding and facilitating model design.
- 2. Allowing learning with little or no supervision.
- 3. Offering rich generalization power.

