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Problem statement

• Understanding 3D scene layout is a fundamental computer vision
problem and has many applications in real life

Augmented reality (AR) Autonomous driving Robotics
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• 3D scene understanding aims at estimating the 3D geometries of the
observed scene
• There are many tasks in 3D scene understanding (static, dynamic)

Problem statement

Depth estimation Motion estimationSegmentation

6



Challenges
• Tedious and sometimes impossible annotations

• Geometrical cues are coupled
• Movement of pixels can be caused by moving camera or moving object

Sparse LiDAR points
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Our contributions

• Unsupervised learning of 3D geometry (free of annotations)
• Decomposing geometrical cues and joint learning (coupled geometrical cues)

• Unsupervised learning of static 3D cues
• Unsupervised learning of dynamic 3D cues
• Unsupervised joint learning of motion and geometry with holistic 3D
understanding

Works
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• Unsupervised depth estimation

• Unsupervised optical flow estimation

• Joint unsupervised learning of geometry and motion
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Unsupervised learning of static 3D cues

Unsupervised Learning of Geometry with Edge-aware Depth-Normal Consistency, AAAI18’ (oral)

LEGO: Learning Edge with Geometry all at Once by Watching Videos, CVPR18’ (spotlight)
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Data samples

training testing

11



Previous work
target viewsource view

motion net
depth net

mask !"

warp

Zhou et al. CVPR 2017

project

warp

�"

�#

�$#
source view

target view
project
to 3D camera

motion[R, t]

project
to 2D

(a) (b) 
source view

target view

source view

target view

source view

target view
project
to 3D

source view

target view
project
to 3D camera

motion[R, t]

source view

target view
project
to 3D camera

motion[R, t]

project
to 2D

(a)

12



Limitations

• Need normal information
• Edge should be incorporated
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(a) Input frame (b) Ground truth (c) Estimation results by Zhou et al. (d) Our results
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• depth-to-normal: cross-product
• normal-to-depth: dot-product, original depth as reference
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Smoothness
Edge-aware smoothness

!

I "#|%&(())| +/-
17



Evaluation (depth)

Depth performance comparison with state-of-the-art methods on KITTI dataset
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Normal performance comparison with other methods on KITTI test split

Evaluation (surface normal)
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Visual comparison (outdoor)

Visual comparison with Zhou et al. and our method

Input image Ground truth Our results Zhou et al results
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Visual comparison (indoor)

� Reasonable performance for scene with intersecting planes (first, second row)
� Relatively messy results for scenes with only objects (third row)
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• We incorporate depth-normal consistency and achieved better
estimation results

• Depth and normal results are both improved

Summary
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• Unsupervised depth estimation

• Unsupervised optical flow estimation

• Joint unsupervised learning of geometry and motion
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Unsupervised joint learning of edge and geometry
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Limitation
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• Three subnetworks trained from scratch jointly
• depth net, pose net and edge net

• Trained on KITTI or Cityscapes videos

• Optimizer: Adam, !" = 0.9, !( = 0.009, ) = 10+,, learning rate 0.002
• Training time: 6 hours (5 epochs) on Titan X (Pascal)

Training
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Results (depth)

Depth GTOur depthYang et al.Input image Zhou et al.

28



Input image Zhou et al. Yang et al. Our normal Normal GT

Results (normal & edge)

Input image Li et al. HED-N Our edges Edge GT29
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• Unsupervised depth estimation

• Unsupervised optical flow estimation

• Joint unsupervised learning of geometry and motion
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Unsupervised learning of motion

Occlusion Aware Unsupervised Learning of Optical Flow, CVPR18’

Input frame 1 Ground truth optical flow Our estimation results



Previous work

Unsupervised optical flow estimation pipeline

Ren, Zhe, et al. "Unsupervised Deep Learning for Optical Flow Estimation." AAAI. 2017.
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Limitation

Optical flow confusion at occlusion/de-occlusion regions
34



Approach

• Explicitly model the occlusion mask to filter out occlusion regions in loss calculation35



Occlusion mask
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Occlusion map

• Occlusion happens in regions in image 1 that are covered in image 2 36



• Performances on different datasets

Evaluation

Flying chairs data sample KITTI data sample 37



Evaluation

Qualitative results on Sintel dataset

Qualitative results on KITTI2012 dataset
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Summary

• The occlusion issue is explicitly modeled in this work

• We evaluated on various benchmarks outperformed previous SOTA
methods

• A step-stone for our joint understanding of static and dynamic scenes

39



• Unsupervised depth estimation

• Unsupervised optical flow estimation

• Joint unsupervised learning of geometry and motion
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Unsupervised joint learning of
geometry and motion

Every Pixel Counts: Unsupervised Geometry Learning with Holistic 3D Motion Understanding, ECCV workshop 18’

Every Pixel Counts ++: Joint Geometry and Motion Learning with 3D Holistic Understanding, TPAMI submission41



• An important assumption of the unsupervised depth learning is the
scene being static.
• All pixel movement is caused by camera motion

• Optical flow represents both camera motion and object motion

Limitation

42



Approach

Every Pixel Counts ++: Joint Geometry and Motion Learning with 3D Holistic Understanding, TPAMI submission
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Approach (HMP)
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Approach (loss terms)

View synthesis:

Smoothness:

HMP consistency:

45



Training

• Iterative training:
1. Train DepthNet and MotionNet in an unsupervised approach

2. Train FlowNet in an unsupervised approach

3. Iteratively do:
Fix DepthNet and MotionNet, add HMP loss, train FlowNet
Fix FlowNet, add HMP loss, train DepthNet and MotionNet

4. Jointly train all three networks

• Both pre-training and finetuning on unlabeled KITTI videos
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Evaluation
Five tasks to evaluate:

1. Depth evaluation (DepthNet)
2. Optical flow evaluation (FlowNet)
3. Odometry evaluation (MotionNet)
4. Motion segmentation (HMP)
5. Scene flow evaluation (Depth + Flow)
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Evaluation (depth)
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Evaluation (depth)
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Evaluation (optical flow)
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Evaluation (optical flow)
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Evaluation (odometry)
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Evaluation (motion segmentation)
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Evaluation (scene flow)
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Summary

• Add more geometrical constrains

• Decouple different geometrical cues (depth, normal ,edge)

• Joint learning of multiple tasks is very helpful

• Decompose the background and dynamic motion
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Thank you!
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