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Challenging

• Data • Task • Formulation
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• Indoor, Depth ~ 3m

• Outdoor, Depth ~ 50m
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Challenging

• Data • Task • Formulation

Hedau et al. ICCV2009

Surface Label Estimation

Hoiem et al. ICCV2005

Geometric Context Predict Human Interaction

Jiang et al. ICCV2009



Challenging

Bedroom

Classification Detection Segmentation

• Data • Task • Formulation

• Geometry Representation

• Semantic Representation

Volumetric Point Cloud Mesh

• Holistic



We’ll discuss…

• Data • Task • Formulation

Indoor Scene

Geometry

Semantic

Pixelwise

Holistic



• Time of Flight

Time of Flight

• Structured Light

Structured Light

Fast motion
Multi-Path

Multi-Path Interference

Calibration
Multi-Device 

Multi-Device Interference

Active Depth Sensing



Left View Right View Disparity

• Stereo Matching
Texture-less Region

Passive Depth Sensing



Left View Right View Disparity

• Stereo Matching
Texture-less Region

Active Stereo System



Deep  
Learning

Use deep learning! No ground truth…

2500mm

Active Stereo System



Self-supervised Learning Annotation Supervision Just keep running…

Output: DisparityInput: Left/Right View End-to-End System

veStereoNetveSvevevActivvActititititivveStSS

ActiveStereoNet



Left View Right ViewLeft View Right View Estimated Disparity

Neural 
Network

Self-Supervised Learning
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Left View Right View

Estimated Disparity

Self-Supervised Learning

Neural 
Network



Left View Right View

Left View Right View Estimated Disparity

Self-Supervised Learning

Neural 
Network



Left View Right View

Left View Right View Estimated Disparity

Reconstructed Left View

Self-Supervised Learning

Neural 
Network



Photometric Loss

Left View Right View Estimated Disparity

Reconstructed Left View

Reconstructed Left View |

Self-Supervised Learning

Neural 
Network

Photometric Loss = | Left View -



Photometric Loss

Left View Right View Estimated Disparity

Reconstructed Left View

Photometric Loss = | Left View - Warping(Right View, Left Disparity) |

Self-Supervised Learning

Neural 
Network



Experiments



Intel RealSense D435

IR Projector Color Camera

IR Stereo Camera

Left IR Image Right IR Image

Color Image

Experiments



Intel RealSense D435

IR Projector Color Camera

IR Stereo Camera

Left IR Image Right IR Image

Color Image

Experiments

Color Image

Intel RealSense D435

Left View Intel RealSense D435 ActiveStereoNet



IR Left Input PatchMatch Stereo HashMatch Stereo

Sensor Output ASN Semi Supervised (ours) ASN Self-Supervised (ours)

Disparity Qualitative Result
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IR Left Input PatchMatch Stereo HashMatch Stereo

Sensor Output ASN Semi Supervised (ours) ASN Self-Supervised (ours)

Disparity Qualitative Result



Fit plane on planar-wise scene as ground truth.

Disparity Quantitative Result



Sensor — Semi-Global Matching

Disparity Quantitative Result



Traditional Methods

Disparity Quantitative Result



Previous Self-Supervised Method

Disparity Quantitative Result



ActiveStereoNet

Disparity Quantitative Result



ActiveStereoNetActiveStereoNet

Disparity Error: 0.2 px 0.03 px

Disparity Quantitative Result



Active Stereo Net: End-to-End Self-Supervised 
Learning for Active Stereo Systems

 Yinda Zhang, Sameh Khamis, Christoph Rhemann, Julien Valentin, Adarsh Kowdle, Vladimir 
Tankovich, Michael Schoenberg, Shahram Izadi, Thomas Funkhouser, Sean Fanello

ECCV 2018

Project Webpage: 
http://asn.cs.princeton.edu/



Pixel-wise Depth Estimation
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What if only one eye?
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…in Monument Valley

Little girl

Staircase
Tower

What if only one eye?



…in Reality

Depth

Semantic Segmentation Surface Normal

Instance Boundary

Color

Understand from Single Image



Aligned color and gnd

Ground Truth

Ground truth is noisy!

Image Raw Depth Refined Depth Normal Map

Missing depth!

Diversity

NYU Dataset
1449

Limited
Noisy

Data for Scene Understanding



Image Raw Depth Refined Depth Normal Map

Missing depth!

∞
∞

Accurate

SyntheticNYU Dataset
1449

Limited
Noisy

Aligned color and gnd

Ground Truth
Diversity

Ground truth is noisy!

Data for Scene Understanding



Synthetic Virtual Scene: SUNCG



• Source Domain • Target Domain

Synthetic Data Generation



• Real Data

Synthetic Data Generation

• Synthetic Data



Synthetic Data Generation

• Real Data • Synthetic Data



Realistic Synthetic Data?

• Viewpoint • Physically based 

Rendering
• Illumination

emissive



Realistic Synthetic Data?

• Viewpoint • Physically
based Rendering

• Illumination

emissive

• Viewpoint • Physically
based Rendering

• Illumination

emissivee

OpenGL Rasterization Physically Based Rendering



• Speed: 30s per camera

• # Image: ~500,000

Realistic Synthetic Data!



• Speed: 30s per camera

• # Image: ~500,000

Realistic Synthetic Data!

Is the synthetic data useful?
Does better color matter?



• Evaluation Metric:

Color Surface Normal

• Mean angle error

Normal Estimation



Shortcut connection

Share pooling maskConvolution Deconvolution

Max pooling
Unpooling

Normal Architecture

• Fully Convolutional Neural Network



N/A NYUv2 NYUv2 27.30

Mitsuba N/A NYUv2 27.90
OpenGL N/A NYUv2 33.06

Pre-Train Fine-tune Test Evaluation

OpenGL NYUv2 NYUv2 23.38
Mitsuba NYUv2 NYUv2 21.74

• Evaluation Metric: mean angular error

Quantitative Evaluation



Testing Image NYUv2 MLT MLT+NYUv2Ground Truth Error Map

Qualitative Results



Accuracy: 31.7→33.2 
Accuracy: 71.3 →72.5 

• Semantic Segmentation

• Instance Boundary Detection

Color Input w/o Syn. Data w/ Syn. Data Ground Truth

Other Tasks



Physically-Based Rendering for Indoor 
Scene Understanding Using Convolutional 

Neural Networks

Y. Zhang, S. Song, E. Yumer, M. Savva,  
J. Lee, H. Jin, T. Funkhouser.

Project Webpage: 
http://pbrs.cs.princeton.edu

CVPR 2017



iPhone XS:  
Powerful but Expensive

iPhone XR:  
Compact and Cheap

Dual v.s. Single



• More information

Dual v.s. Single

• Multiple Cameras • Single Cameras

• Analytical solution

• Expensive setting

• Limited information
• Data-driven, learn prior 

• Cheap and available

Internet Photos

• Reliable result • Plausible result
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From Intel Realsense R200

But… Depth is not so great!



Thin StructureBright Illumination Distant Surfaces Shiny Surfaces Black Surfaces
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Why?

From Intel Realsense R200



Input: Color Image

Input: Sensor Depth

Output: Completed Depth

Goal: Depth Completion



• Depth Estimation from RGB

Harmonizing Overcomplete Predictions  
[Chakrabarti, 2016]

Deeper Depth Prediction [Laina, 2016]

• Depth Upsampling from Sparse

Sparsity Invariant CNNs [Uhrig, 2017] Joint Bilateral Filter [Silberman, 2012]

• Depth Completion from RGB-D

Related Work



Color Image

Sensor Depth

Complete Depth

Goal: Depth Completion



Color Image

Sensor Depth

Complete Depth

Obvious Approach



Color Image

Sensor Depth

Complete Depth

Surface Normal

FCN

Global Linear 
Optimization

Our Approach



•  Estimating surface normals is easier than estimating depths.

Constant within planar regions

Determined by local shading or texture Unit vector (-1,1)

Why Surface Normals?



•  Depths can be estimated robustly from normals.

P
Q

R

Linearized Constraints:

Global Solution!

: Estimated surface normal at pixel P

Non-linear Constraints:

•  Estimating surface normals is easier than estimating depths.

Why Surface Normals?



Experiment



• Matterport3D/ScanNet Dataset:  
• Environment with dense RGBD scans 
• High quality mesh reconstruction

[1] Dai et.al, ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes, CVPR 2017
[2] Chang et.al, Matterport3D: Learning from RGB-D Data in Indoor Environments, 3DV 2017

Ground Truth for Missing Area



Camera Viewpoint

Color Image Sensor Depth Rendered GT

Ground Truth for Missing Area



[5] J. T. Barron and B. Poole. The fast bilateral solver.  ECCV 2016. 
[20] D. Ferstl et al. Image guided depth upsampling using anisotropic total 
generalized variation. ICCV 2013. 
[23] D. Garcia. Robust smoothing of gridded data in one and higher dimensions 
with missing values. Comp. stat. & data anal., 2010. 
[64] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus. Indoor segmentation and 
support inference from rgbd images. ECCV 2012. 
[80] Y. Zhang et al. Physically-based rendering for indoor scene understanding 
using convolutional neural networks. CVPR 2017.

• Evaluation metrics:

• Relative Error:

• Squared Error:

• Relative Depth:

Results on Matterport3D

• Comparison to depth completion methods:



• Comparison to depth completion methods:

Results on Matterport3D

[5] J. T. Barron and B. Poole. The fast bilateral solver.  ECCV 2016. 
[20] D. Ferstl et al. Image guided depth upsampling using anisotropic total 
generalized variation. ICCV 2013. 
[23] D. Garcia. Robust smoothing of gridded data in one and higher dimensions 
with missing values. Comp. stat. & data anal., 2010. 
[64] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus. Indoor segmentation and 
support inference from rgbd images. ECCV 2012. 
[80] Y. Zhang et al. Physically-based rendering for indoor scene understanding 
using convolutional neural networks. CVPR 2017.



More Challenging Case…



Color Image Sensor Depth Completed Depth

Sensor Point Cloud Completed Point Cloud

+

Results on Realsense R200
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Color Image Sensor Depth Completed Depth

Sensor Point Cloud Completed Point Cloud

+

Results on Realsense R200



Color Image Sensor Depth Completed Depth

Sensor Point Cloud Completed Point Cloud

+

Results on Realsense R200



Go crazy!



Color Est. Normal 58,534 pixels Our result

How Much Depth Do We Need?



2000 pixels Our result

How Much Depth Do We Need?

Color Est. Normal 58,534 pixels Our result



500 pixels Our result

How Much Depth Do We Need?

Color Est. Normal 58,534 pixels Our result



100 pixels Our result

How Much Depth Do We Need?

Color Est. Normal 58,534 pixels Our result



20 pixels Our result

How Much Depth Do We Need?

Color Est. Normal 58,534 pixels Our result



Couldn’t be harder… 1px



• Run our method assuming center pixel is at 3 meter, and 
globally scale with the 1 known depth. 

• Run single image based depth estimation, and globally scale 
with the 1 known depth.

Depth Completion with 1px

• Comparison to depth estimation methods:

[7] Chakrabarti,  A. et al., Depth from a single image by harmonizing overcomplete 
local network predictions.  NIPS 2016. 
[37] Laina, C. et al., Deeper depth prediction with fully convolutional residual 
networks. 3DV 2016.



Deep Depth Completion of a 
Single RGB-D Image 

Yinda Zhang, Thomas Funkhouser

Project Webpage: 
http://deepcompletion.cs.princeton.edu/

CVPR 2018



3D Geometry

• Point cloud

• Representation

• Mesh• Volumetric

✓ Easy for deep learning 
High memory cost 
Slow computation 
Low resolution

✓ Can work with deep learning 
Point cloud are un-ordered 
No high order surface detail 
Non-trivial to form closed shape

✓ Connectivity 
✓ Surface details 

Tricky for deep learning



Pixel2Mesh

• End-to-end system produces mesh from a single color image.

[1] Choy, C.B., Xu, D., Gwak, J., Chen, K., Savarese, S.: 3d-r2n2: A unified approach for single 
and multi-view 3d object reconstruction. In: ECCV (2016)
[2] Fan, H., Su, H., Guibas, L.J.: A point set generation network for 3d object reconstruction from 
a single image. In: CVPR (2017)
[3] Lorensen, W.E., Cline, H.E.: Marching cubes: A high resolution 3d surface construction 
algorithm. In: SIGGRAPH (1987)
[4] Bernardini, F., Mittleman, J., Rushmeier, H.E., Silva, C.T., Taubin, G.: The ball-pivoting 
algorithm for surface reconstruction. IEEE Trans. Vis. Comput. Graph. 5(4), 349–359 (1999)



Graph-based CNN

• Mesh can be represented as a graph.

• Run CNN on graph.

• Belief propagation. 



Pixel2Mesh

• Deform from a ellipsoid to target mesh. 
• From coarse to fine. 
• Explainable model.



Mesh Deformation Block



Perceptual Feature Pooling



Graph Unpooling



Experiment Results



Experiment Results



Ablation Study



Pixel2Mesh: Generating 3D Mesh 
Models from Single RGB Image

Nanyang Wang, Yinda Zhang, Zhuwen Li, 
Yanwei Fu, Wei Liu, Yu-Gang Jiang

Project Webpage: 
http://bigvid.fudan.edu.cn/pixel2mesh/

ECCV 2018



What’s next?

• Better geometry
• Thin structure
• Distant area
• Dynamic scene

• Availability
• Quality v.s. Computation
• Multi-view, Temporal sequence
• IR, Projector, Color, Event image

• Integration
• Semantics, Motion Planing
• Rendering
• VR/AR


