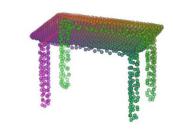
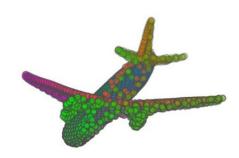


FoldingNet Point Cloud Autoencoder - Can Neural Networks Learn Paper Folding?

Yaoqing Yang Carniegie Mellon University (work done at MERL) Thursday, Jan 31, 2019





The Papers and Collaborators

- FoldingNet: Point Cloud Auto-encoder via Deep Grid Deformation (CVPR'18 Spotlight)
- Mining Point Cloud Local Structures by Kernel Correlation and Graph Pooling (CVPR'18)
- Thank my collaborators for their support (including these slides)!

Dr. Chen Feng NYU

Dr. Yiru Shen Facebook

Dr. Dong Tian InterDigital

This's me!

Code available: http://www.merl.com/research/license#FoldingNet http://www.merl.com/research/license#KCNet

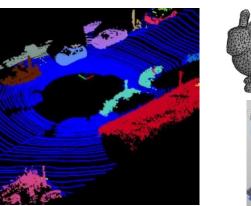
Videos of the slides available: https://www.youtube.com/watch?v=x1dAV4tP2oo

Deep Learning on 3D Data

- Why 3D Deep Learning
 - Intrinsically different than images E.g. unorganized/unordered

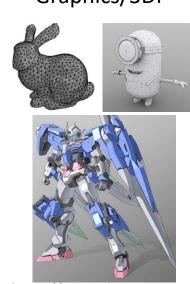
watch?v=UD4asn3gkNI

• An important data format – many application domains



https://www.youtube.com/ watch?v=7NNpvtdrHkU

Robotics



https://www.pinterest.com/ pin/134756213823244639/

Graphics/3DP Mechanical Engineering **Civil Engineering Geospatial Science** https://www.youtube.com/ watch?v=HhV6LAZ3DN0 http://www.aamgroup.com/ https://www.youtube.com/ services-and-technology/aerial-survey

3D Input Representation

Voxel

- ✓ 3D CNN
- Implicit representation
- × Resolution/Scalability

https://www.planetminecraft.com/ project/giant-snowman-1638162/

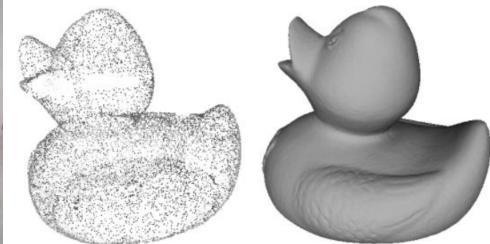
Multi-view

- ✓ 2D CNN
- Generalize to points?
- × Large networks

http://photoboothexpo.com/ bullet-time-photo-booths/

Point Cloud/Mesh

- ✓ Raw format/Efficiency
- Explicit representation
- × Unorganized/Unordered



https://elmoatazbill.users.greyc.fr/ point_cloud/reconstruction.png

FoldingNet

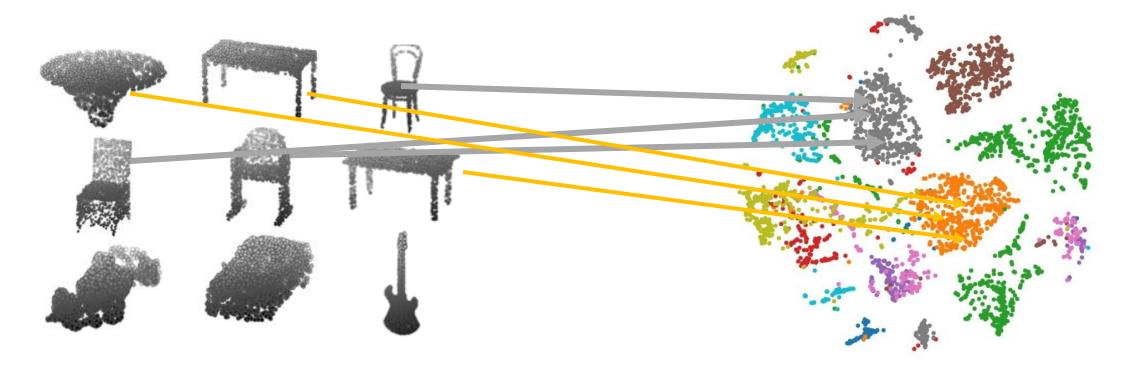
- Related works
- Conventional AutoEncoder
- Intuition Paper Folding Operations
- FoldingNet Decoder Diagram
- Learned Folding Profiles
- A Theorem

Yang, Yaoqing, Chen Feng, Yiru Shen, and Dong Tian. "Foldingnet: Point cloud auto-encoder via deep grid deformation." In *Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)*, vol. 3. 2018.

What are we trying to do?

3D Data (Point Clouds)

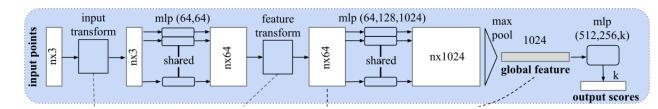
Latent space

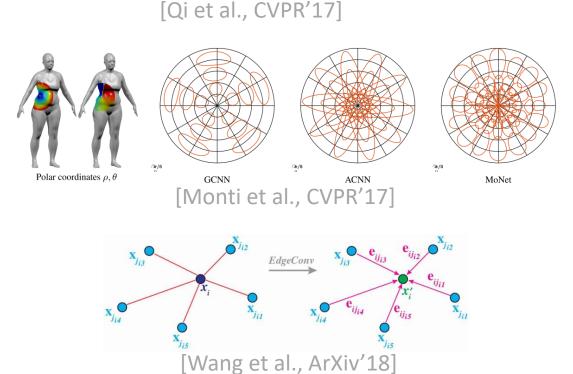


Unsupervised learning: reducing label cost, generation

Related Works: Deep Learning on Points

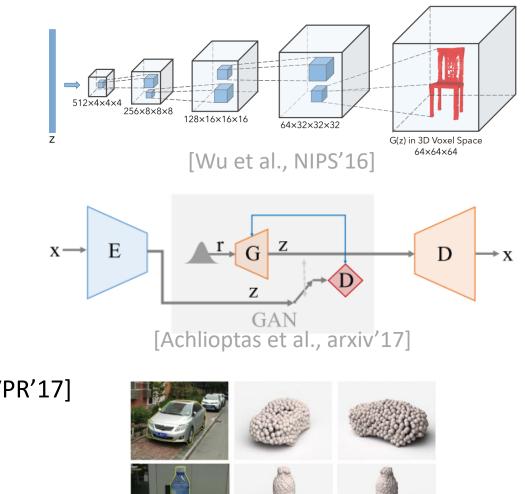
- PointNet [Qi et al., CVPR'17]
 - Share-weight MLP + Global Pooling
- MoNet [Monti et al., CVPR'17]
 - Graph/manifold/mesh
- Edge-Cond Graph CNN [Simonovsky et al., CVPR'17] Dynamic Graph CNN [Wang et al., ArXiv'18]
 - Edge feature function for Conv.
- And many new methods in CVPR'18!
 - SPLATNet, SO-Net, etc.





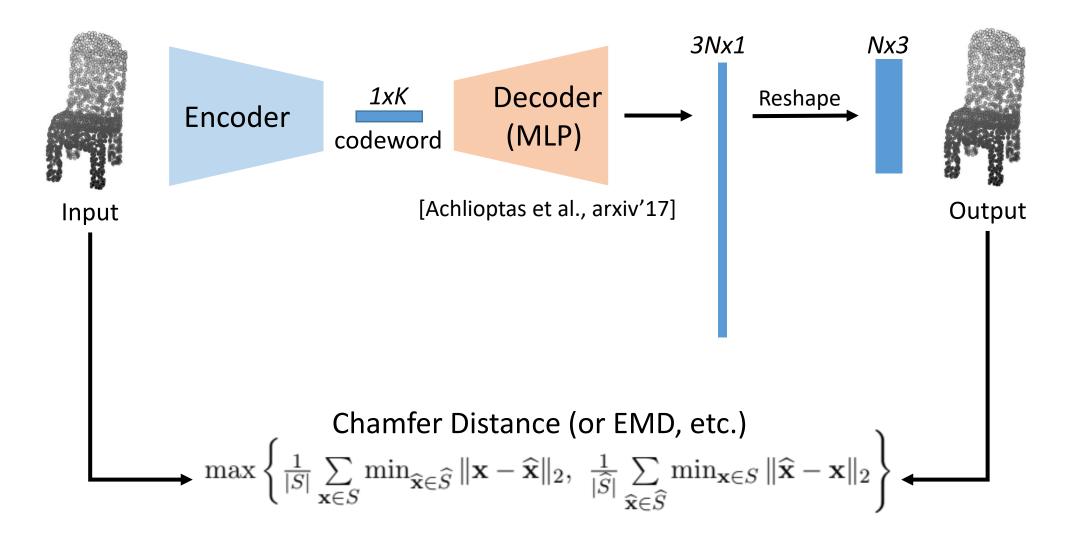
Related Works: Unsupervised 3D Deep Learning

- 3D-GAN [Wu et al., NIPS'16]
 - Voxel-based
 - Deconvolution-based decoder
- Latent-GAN [Achlioptas et al., arxiv'17]
 - Sort 3D points by lexicographic order
 - 1D CNN encoder
 - 3-fully-connected-layer decoder
- Point Set Generation Net [Fan et al., CVPR'17]
 - Supervised single image to point set
 - Deconvolution-based decoder



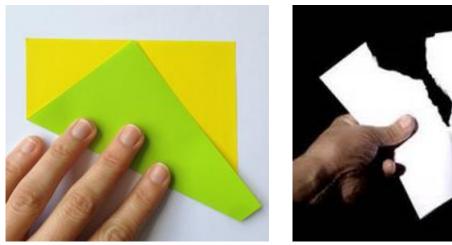
[Fan et al., CVPR'17]

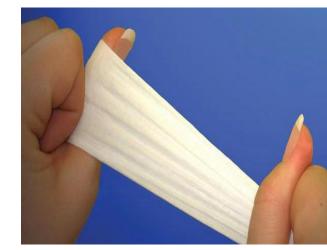
Baseline Auto-encoder Framework



Intuition of FoldingNet: Elastic Paper Folding

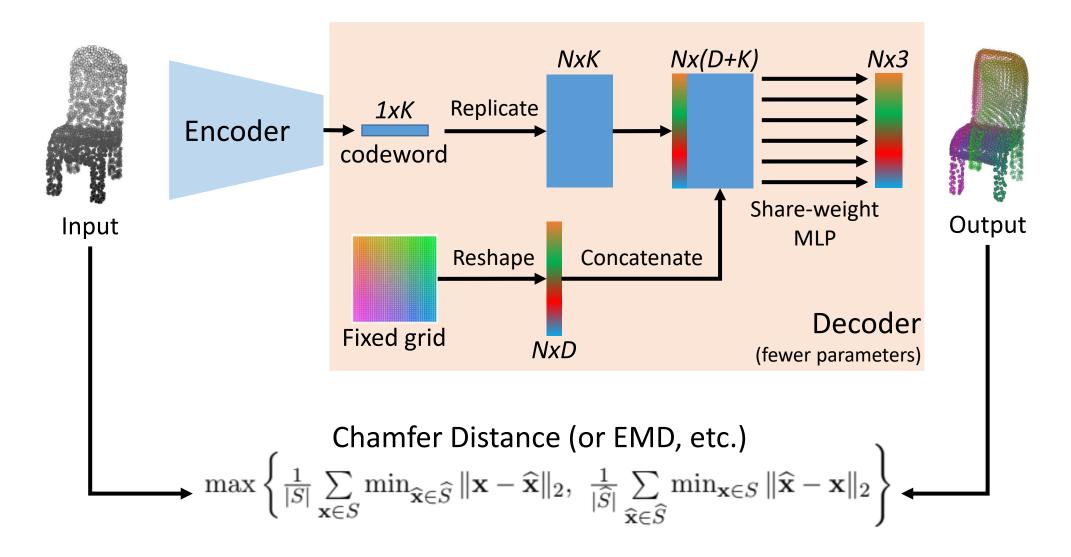
- 3D point clouds are often obtained from object surfaces
 - Discretized from CAD models
 - Sampled from line-of-sight sensors
- 3D object surfaces are intrinsically 2D-manifolds
 - Can be transformed from a 2D plane, through the Origami operations
 - This 2D-3D mapping is known as parameterization/cross-parameterization





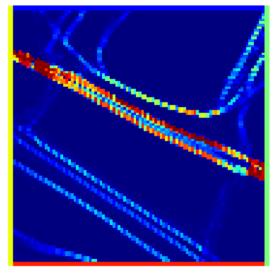
Stretch

FoldingNet Auto-encoder Framework

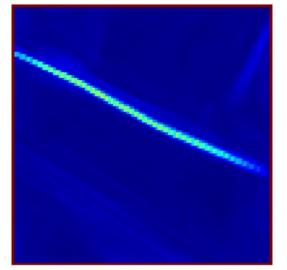


Learned Folding Profile - Sofa

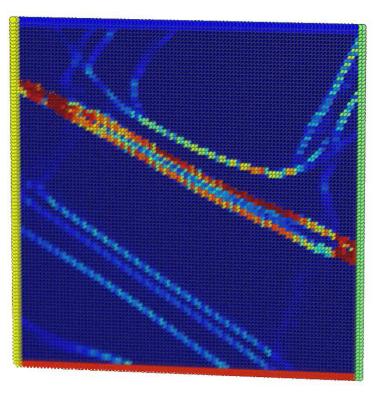
Folding Creases (Curvature)



Tear/Stretch (Neighbor Distance)



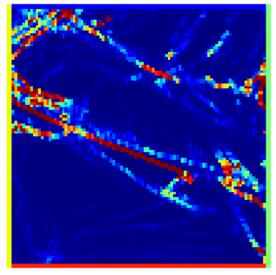
Folding Animation: Sofa (colored by curvature)



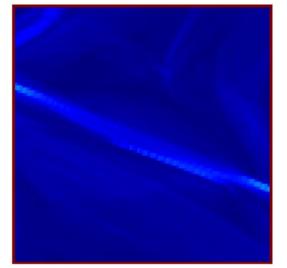
Videos of the slides available at: <u>https://www.youtube.com/watch?v=x1</u> dAV4tP2oo

Learned Folding Profile - Airplane

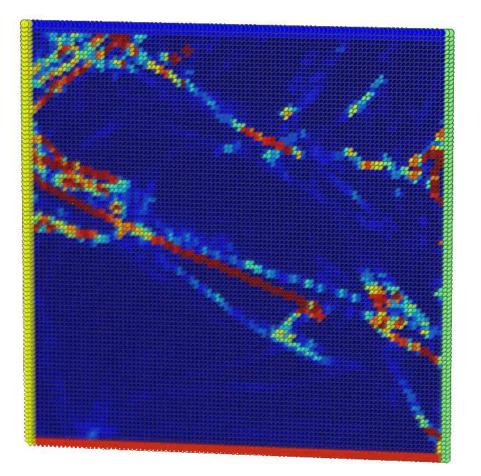
Folding Creases (Curvature)



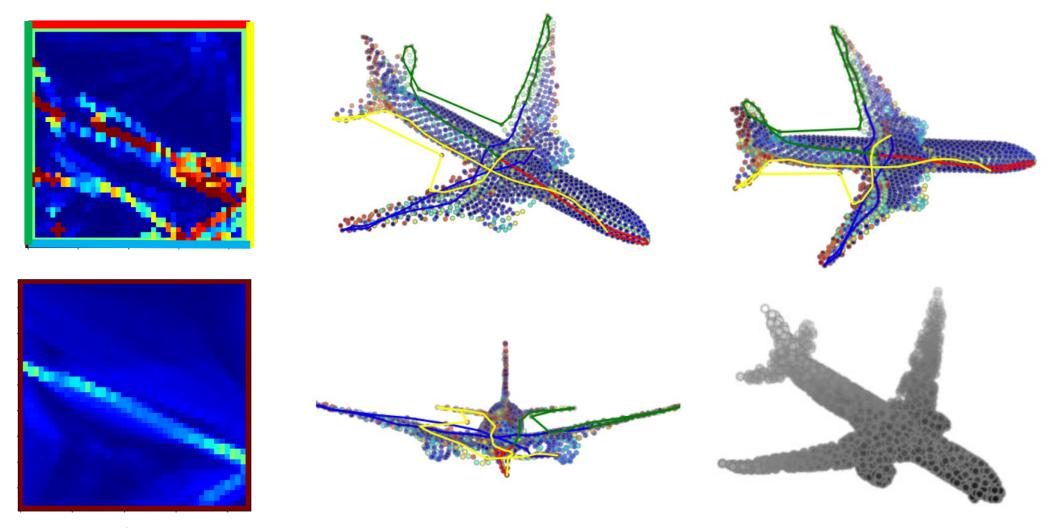
Stretch (Neighbor Distance)



Folding Animation: Airplane (colored by curvature)

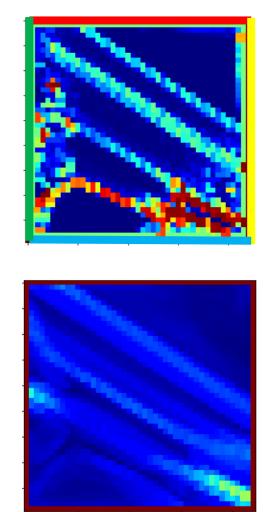


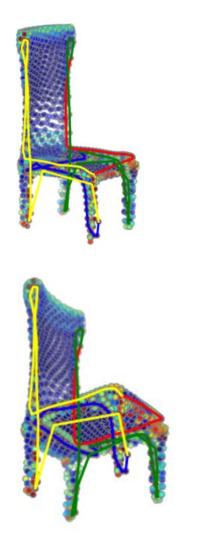
Learned Folding Profile - Airplane

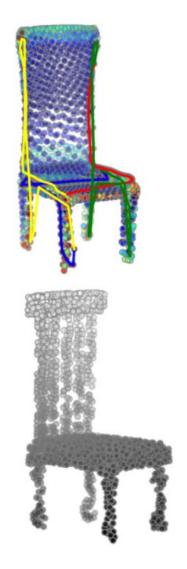


Tear/Stretch

Learned Folding Profile - Chair







But, can one DNN approx. multiple 2D-3D mappings?

- Universal Approximation Theorem directly tells us:
 - A specific 2-layer MLP can approximate a specific 2D-3D mapping.

$$f_{\theta_1}() = \bigcap_{n}, \quad f_{\theta_2}() = \bigcup_{n}, \quad \dots \quad f_{\theta_n}() = \bigcup_{n}$$

- Our theorem says:
 - A single 2-layer MLP can be "tuned" by the input "codeword" to approximate multiple arbitrary 2D-3D mappings.

$$f_{\theta}($$
, $C_1) =$, $f_{\theta}($, $C_2) =$, \cdots , $f_{\theta}($, $C_n) =$

FoldingNet Experiments

- Training Process Visualization
- Codeword Space Visualization
- Shape Interpolation
- Transfer Classification
- Semi-supervised Learning
- Ablation Study

Training Process Visualization

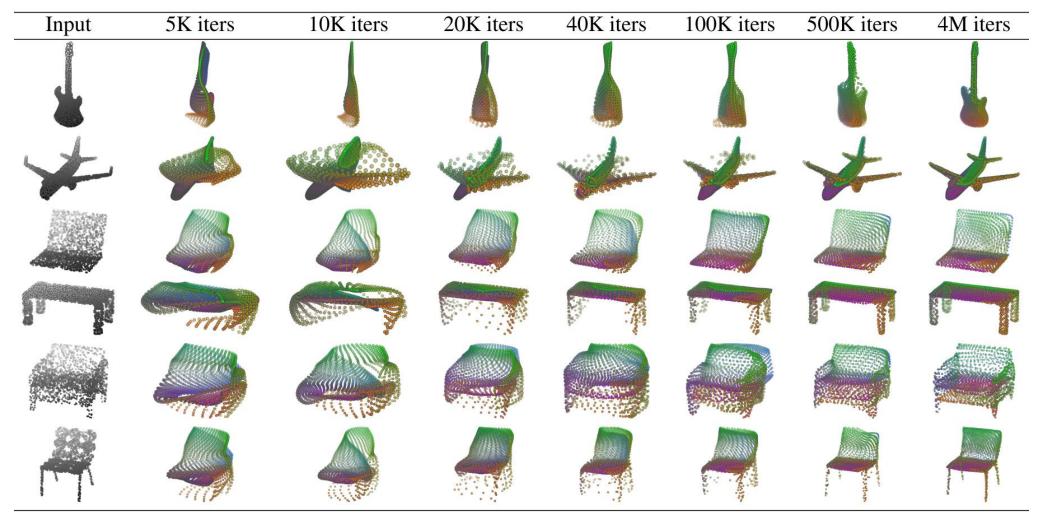


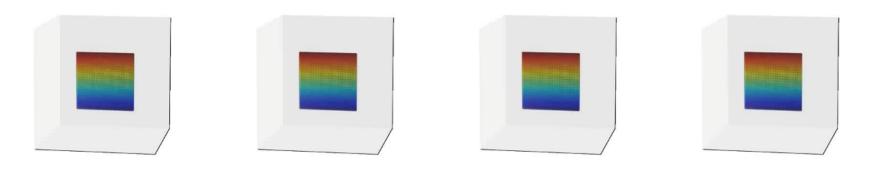
Table 2. Illustration of the training process. Random 2D manifolds gradually transform into the surfaces of point clouds.

Training Process Video

Videos of the slides available at:

https://www.youtube.com/watch?v=x1 dAV4tP2oo

ModelNet



Codeword Space Visualization

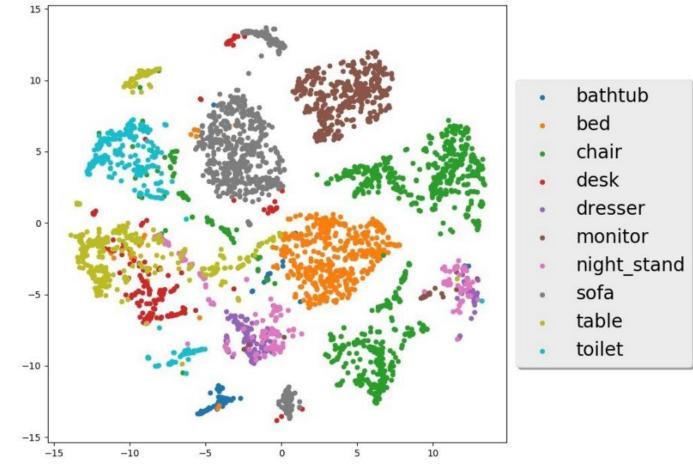


Figure 2. The T-SNE clustering visualization of the codewords obtained from FoldingNet auto-encoder.

Shape Interpolation

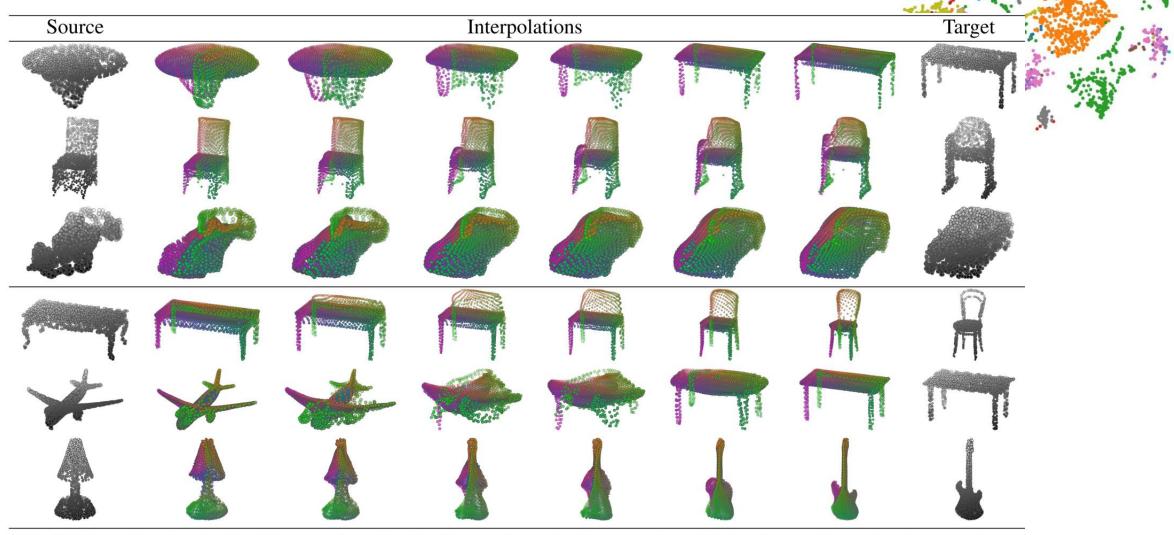
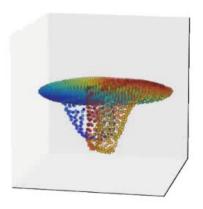


Table 3. Illustration of point cloud interpolation. The first 3 rows: intra-class interpolations. The last 3 rows: inter-class interpolations.

Shape Interpolation Video

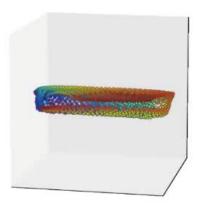
table to table

chair to chair



car to car

table to table

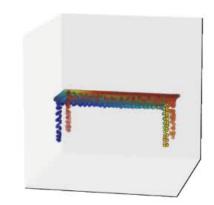


Videos of the slides available at:

https://www.youtube.com/watch?v=x1 dAV4tP2oo

car to car

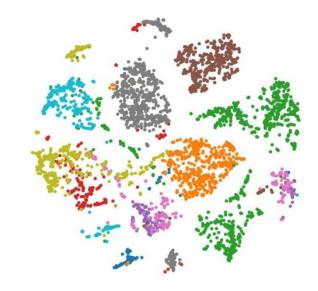
table to table

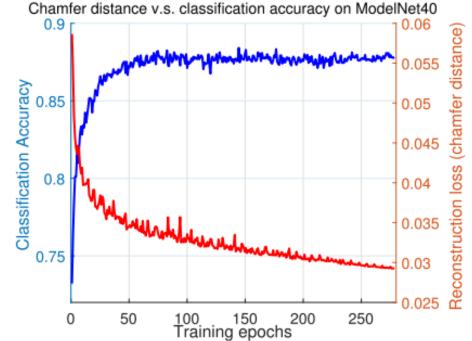


Transfer Classification

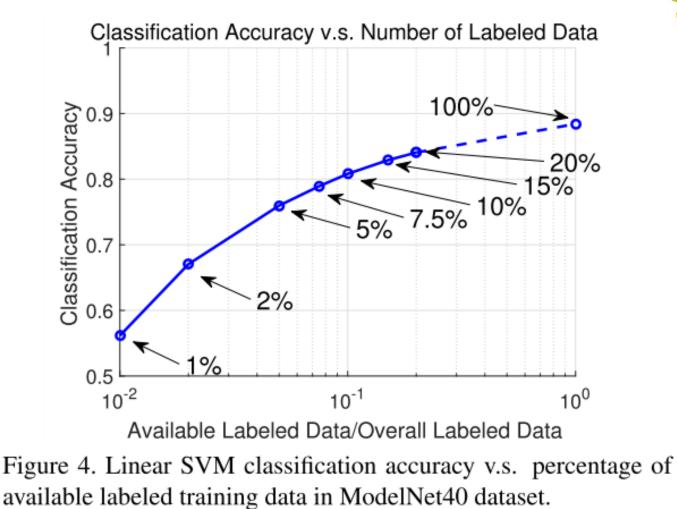
Method	MN40	MN10
SPH [26]	68.2%	79.8%
LFD [8]	75.5%	79.9%
T-L Network [19]	74.4%	-
VConv-DAE [45]	75.5%	80.5%
3D-GAN [56]	83.3%	91.0%
Latent-GAN [1]	85.7%	95.3 %
FoldingNet (ours)	88.4 %	94.4%

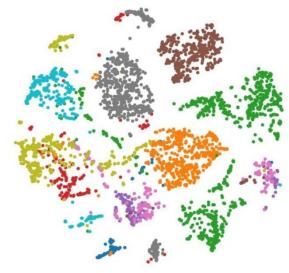
Table 5. The comparison on classification accuracy between FoldingNet and other unsupervised methods. All the methods train a linear SVM on the high-dimensional representations obtained from unsupervised training.





Semi-supervised Learning





Ablation: Decoder Variations

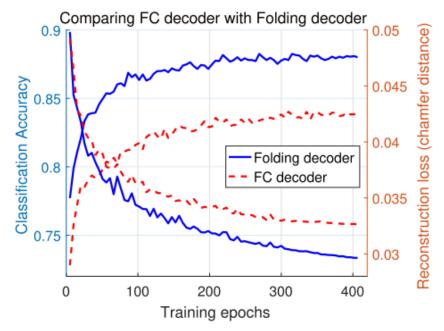


Figure 5. Comparison between the fully-connected (FC) decoder in [1] and the folding decoder on ModelNet40.

Grid Setting	#Folds	Test Cls. Acc.	Test Loss
regular 2D	2	88.25%	0.0296
regular 2D	3	88.41%	0.0290
regular 1D	2	86.71%	0.0355
regular 3D	2	88.41%	0.0284
uniform 2D	2	87.12%	0.0321

Table 6. Comparison between different FoldingNet decoders. "Uniform": the grid is uniformly random sampled. "Regular": the grid is regularly sampled with fixed spacings.

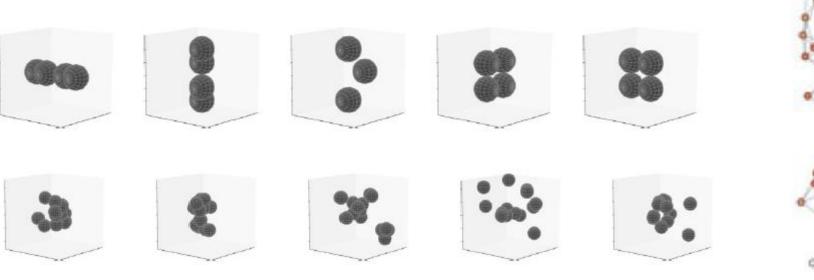
	Cl. Acc.	Tst. Loss	# Params.
FoldingNet	88.41%	0.0296	1.0×10^{6}
Deconv	88.86%	0.0319	1.7×10^{6}

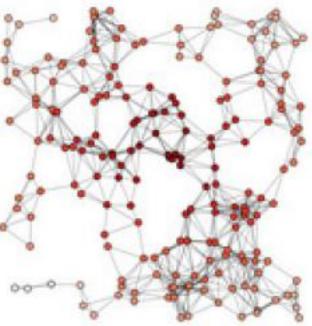
Table 7. Comparison of two different implementations of the folding operation.

Take Home Message

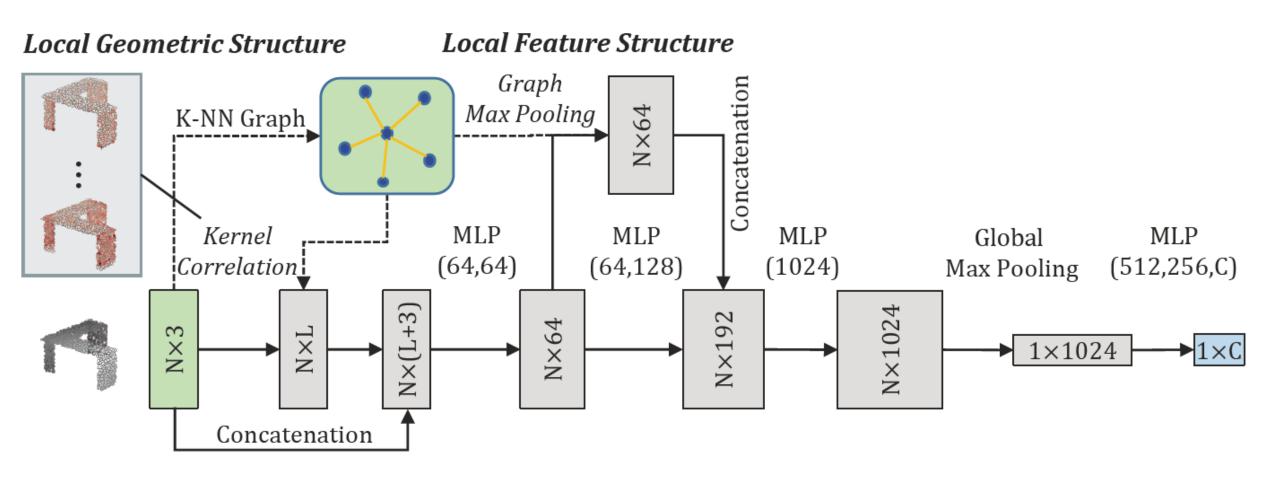
- 3D point clouds are often obtained from object surfaces
- Thus they can be transformed from one or multiple 2D planes
- FoldingNet enables data-driven learning of such transformations
- It is unsupervised: reducing labeling cost, generating point clouds
- Potential Learning-based Applications:
 - 3D Scan/Model Retrieval
 - Surface Repairing/Completion/Reconstruction
 - Scene Generation

Feature Mining on Point Clouds: Kernel Correlation and Graph Pooling





Graph-based Encoder



- Local geometric structures learning
 - Kernel correlation, measures geometric affinity of point sets

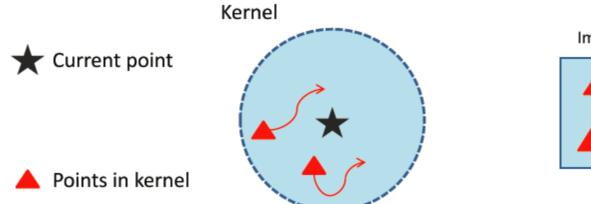
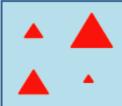


Image kernel



- Local geometric structures learning
 - Kernel correlation, measures geometric affinity of point sets

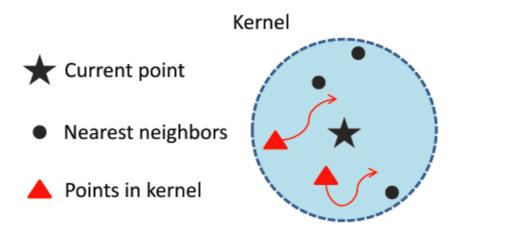
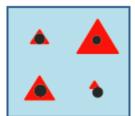
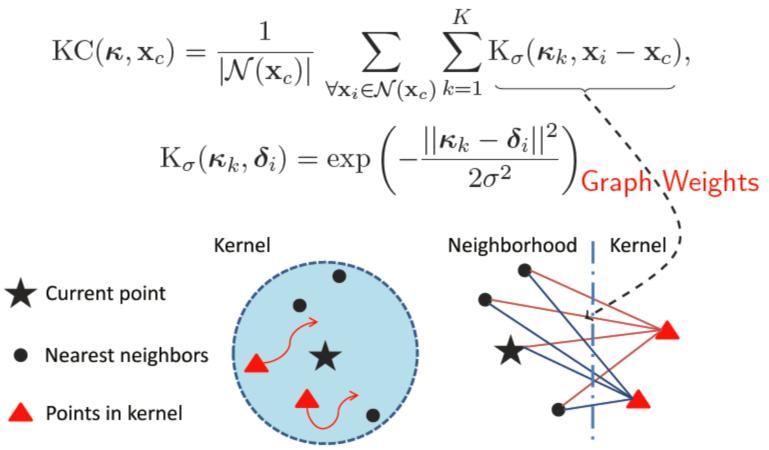


Image kernel



- Local geometric structures learning
 - Kernel correlation, measures geometric affinity of point sets



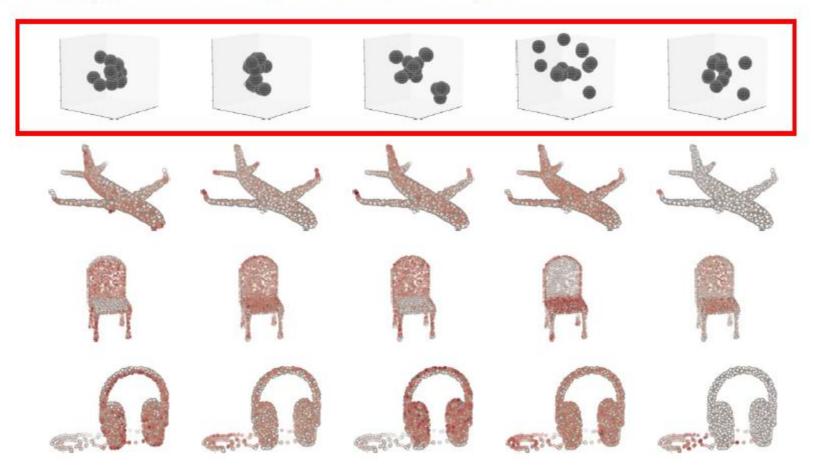
- Local geometric structures learning
 - Kernel correlation, measures geometric affinity of point sets

$$\operatorname{KC}(\boldsymbol{\kappa}, \mathbf{x}_{c}) = \frac{1}{|\mathcal{N}(\mathbf{x}_{c})|} \sum_{\forall \mathbf{x}_{i} \in \mathcal{N}(\mathbf{x}_{c})} \sum_{k=1}^{K} \operatorname{K}_{\sigma}(\boldsymbol{\kappa}_{k}, \mathbf{x}_{i} - \mathbf{x}_{c}),$$

$$\mathbf{K}_{\sigma}(\boldsymbol{\kappa}_{k}, \boldsymbol{\delta}_{i}) = \exp\left(-\frac{||\boldsymbol{\kappa}_{k} - \boldsymbol{\delta}_{i}||^{2}}{2\sigma^{2}}\right)$$

Potential kernels learned

• Example kernels learned and filter responses

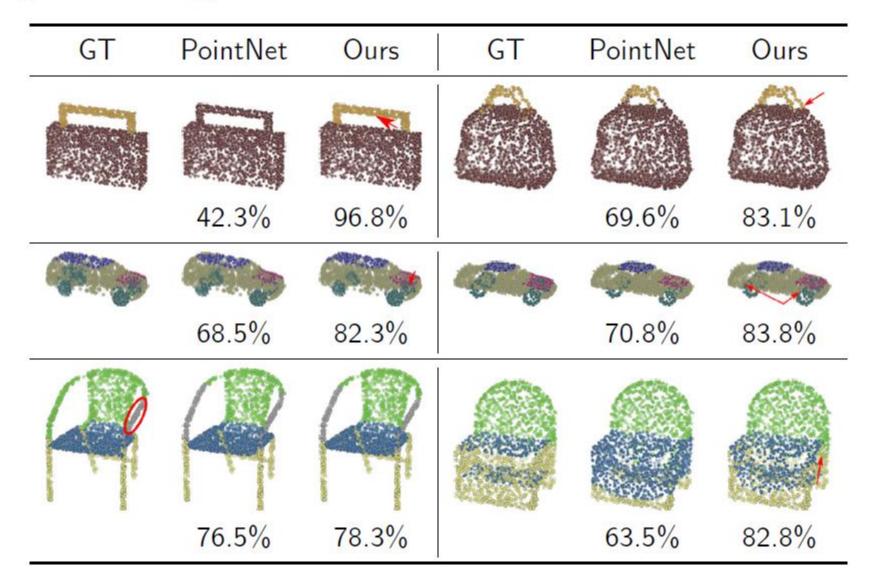


Shape Classification

- ModelNet10, ModelNet40
 - Uniformly sampling from meshes
- L = 32 kernels, each kernel has K = 16 points
- Main competing method, PointNet++
 - Slightly better accuracy with less number of parameters

Method	MN10	MN40	_
MVCNN [36]	-	90.1	
VRN Ensemble [2]	97.1	95.5	} Image avail as inputs
ECC [34]	90.0	83.2	
PointNet (vanilla) [29]	-	87.2	
PointNet [29]	-	89.2	
PointNet++ [31]	-	90.7	
KCNet (ours)	94.4	91.0	_

Object Part Segmentation



Take Home Message

- Find graph embedding via learning
- Graph topology 1: A global neighborhood graph
 - Graph pooling
 - Local geometry learning
 - Local feature aggregation
- Graph topology 2: Local bipartite graphs
 - Local geometry learning
 - Local feature maps

Thanks for your attention!

Any questions?