&
7

Modern Game Engine - Theory and Practice BOOMING %% GAMES104

Lecture 06

Rendering on Game Engine

The Challenges and Fun of Rendering the Beautiful Mother Nature

WANG XI GAMES 104 2022

Red Dead Redemption

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

o

Real-World Landscape

* Huge geospatial scale

* Rich geomorphological

Vegetation

Rivers

Undulating peaks

Alpine snow

Too Complex for Rendering Using Traditional Mesh + Material

Modern Game Engine - Theory and Practice RRBOOMING ~ | GAMES104

Environment Components in Games

—

Sky and Cloud

r R D .
.:‘ fh ;

Vegetation

Terrain

.-:-'q Iw'.k s ,.,;,_"M pl-

Ay .|"hr"

-~ Microsoft Flight Simulator

No Man’s Sky

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

o

Simple Idea - Heightfield

« Satellite image and google earth

B

Height Map Contour Map

Modern Game Engine - Theory and Practice RRBOOMING ~ | GAMES104

Expressive Heightfield Terrains

¢ GAMES104

BBOOMIHG
TECH

Modern Game Engine - Theory and Practice

th Heightfield

in wi

Render Terra

E

t
sEiite
.,n,u....,- A
T L
aeitigy

#

"
1
atsessy
n T
LT

Ia

Mater

Mesh Grids

Need 2 * 1,000 * 1,000 = 2,000,000 triangles

1km x 1km map, sample distance 1m

Modern Game Engine - Theory and Practice

BOOMING
BTECH 7 GAMES104

Adaptive Mesh Tessellation

[fovy = 90°]

[fovy = 30°]

Modern Game Engine - Theory and Practice RRBOOMING ~ | GAMES104

Two Golden Rules of Optimization

View-dependent error bound

Distance to camera and FoV

Error compare to ground truth (pre-computation)

Modern Game Engine - Theory and Practice [RBQAMING ~ GAMES104

Triangle-Based Subdivision

ZAVZANIAN

s

Modern Game Engine - Theory and Practice

BOOMING
TECH

GAMES104

Subdivision and T-Junctions

Continuously partitioning triangles and their
children based on the idea of binary trees

Va

To

Va
\
¢

U1

.Tj-]

T-Junction

forced split

_____(j':._._.______

Modern Game Engine - Theory and Practice RRBOOMING ~ | GAMES104

Triangle-Based Subdivision on GPU

~ SIGGRAPH 2021: Experimenting With Concurrent

Binary Trees for Large-scale Terrain Rendering

94x54 km terrain on GPU using Unity game engine

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

o

QuadTree-Based Subdivision

Terrain (Top View) & m‘era Terrain Quadtree
Pros Y N N T
® ® B “ il Root Node
« Easy to construct o | o Lt ®
« Easy management of data under geospatial, ¢ - . # o o ' ®
including objects culling and data streaming ° . o | e . Y N AN T, W
® 0000 o000 0000 0000
Cons |
@ @ €] @ {
« Mesh subdivision is not as flexible as triangle mesh i \ ’ \
O O : i
 The grid level of the leaf nodes needs to be ek T 000 oooe
. @ @ o @ :
COnSIStent l... J;‘\.Q IOO. .‘0..

Modern Game Engine - Theory and Practice RRBOOMING ~ | GAMES104

Original Terrain

Lowest Resolution Grid Terrain Quad Tree

Modern Game Engine - Theory and Practice

BOOMING
@TECH U GAMES104

Solving T-Junctions among Quad Grids

Source

Stitching Step 1

Mesh LoD Stitching

i {I_
% iy i -
i E P A 3 et 3 i F
i 0T s e = C i
" J ¢ Xy =)
& L ' e L

Modern Game Engine - Theory and Practice RRBOOMING ~ | GAMES104

Triangulated Irregular Network (TIN)

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

MEVEIWACHECR L

Modern Game Engine - Theory and Practice RRBOOMING ~ | GAMES104

Triangulated Irregular Network vs. Adpative Tessellation

Pros Cons
« Easy in runtime rendeirng » Requires certain pre-processing steps
» Less triangls in certain terrain types » Poor reusability

GDC2021 Boots on the Ground: The Terrain of Call of Duty

-

/A

- -

Af?:_‘&

i (A

- —;- il A'i “—L:"Y'
w5

RN P/
\—‘:Qﬁlw\m‘ 'i'i':::'»_sf‘,'\‘\sﬁg‘i‘:;gﬂ' N -
S

7

i

\

GPU-Based Tessellation

Modern Game Engine - Theory and Practice RRBOOMING ~ | GAMES104

Hardware Tessellation

|

F) from base mesh to surface patches

" Hull Shader

______ Tessellator Stage - produces a semi-regular
T | tessellation pattern for each patch

Input Assembler .
Vertex Shader Hull-Shader Stage - transforms basis functions
- 3
e

Domain Shader Domain-Shader Stage - a programmable shader
stage that calculates the vertex position that
corresponds to each domain sample

Geometry Shader

v
<b]
|
| -
=2
o
vy
Q
s
~
>
o
o
&
(«F]
=

Rasterizer

Pixel Shader

Output Merger

Modern Game Engine - Theory and Practice

BOOMING
[REon GAMES104

Simple Hull Shader (control point phase)

// called once per control point
[domain("tri")] // indicates a triangle patch (3 verts)
[partitioning("fractional_odd")] // fractional avoids popping

// vertex ordering for the output triangles

[outputtopology ("triangle_cw")] [outputcontrolpoints(3)]

// name of the patch constant hull shader

[pa c ("Cons: "1

[maxtessfactor(7.0)] //hint to the driver — the lower the better
// Pass in the input patch and an index for the control point
HS_CONTROL_POINT_OUTP’UT HS(InputPatch(VS_OUTPUT_HS_INPUT, 3>
inputPatch, uint uCPID : SV_OutputControlPointID)

$

HS_CONTROL_POINT_OUTPUT Out;

// Copy inputs to outputs - “pass through” shaders are optimal
Out.vWorldPos inputPatch[uCPID] .vPOSWS.xyz;

Out.vTexCoord inputPatch[uCPID] .vTexCoord;

Out.vNormal = inputPatch[uCPID].vNormal;

Out.vLightTS = inputPatch[uCPID].vLightTS;

return Out;

Simple Hull Shader (patch constant phase)

//Called once per patch. The patch and an index to the patch (patch
// ID) are passed in
HS_CONSTANT DATA_OUTPUT ConstantsHS(InputPatch<VS_OUTPUT HS_INPUT, 3>
P, uint PatchID : SV_PrimitiveID)
{
HS_CONSTANT DATA OUTPUT Out;

// Assign tessellation factors - in this case use a global
// tessellation factor for all edges and the inside. These are
// constant for the whole mesh.

Out.Edges[0] = g_TessellationFactor;

Out.Edges[l] = g_TessellationFactor;

Out.Edges[2] = g_TessellationFactor;

Out.Inside = g_TessellationFactor;

return Out;

IOES TESSELLATOR

SHADER

Simple Domain Shader (part 1)

// called once per tessellated vertex

[domain("tri")] // indicates that triangle patches were used

// The original patch is passed in, along with the vertex position in barycentric

coordinates, and the patch constant phase hull shader output (essellation factors)

DS_VS_OUTPUT_PS_INPUT DS (HS_CONSTANT_DATA_OUTPUT input,
float3 BarycentricCoordinates : SV_DomainLocation,
const OutputPatch<HS_CONTROL_POINT_ OUTPUT, 3>
TrianglePatch)

DS_VS_OUTPUT_PS_INPUT Out;
// Interpolate world space position with barycentric coordinates
float3 vWorldPos =
BarycentricCoordinates.x * TrianglePatch[0].vWorldPos +
BarycentricCoordinates.y * TrianglePatch[1].vWorldPos +
BarycentricCoordinates.z * TrianglePatch[2].vWorldPos;
// Interpolate texture coordinates with barycentric coordinates
out.vTexCoord =
BarycentricCoordinates.x * TrianglePatch[0].vTexCoord +
// Interpolate normal with barycentric coordinates
float3 vNormal =
BarycentricCoordinates.x * TrianglePatch[0].vNormal +

DOMAIN
SHADER

// sample the displacement map for the magnitude of displacement

float £Displ tMap . SampleLevel (
g_sampleLinear, Out.vTexCoord.xy, 0).r;

fDisplacement *= g_Scale;

fDisplacement += g_Bias;

float3 vDirection = -vNormal; // direction is opposite normal

t = g Displ

// translate the position
vWorldPos += vDirection * fDisplacement;

// transform to clip space
Out.vPosCS = mul(floatd(vWorldPos.xyz, 1.0),

g_mWorldViewProjection) ;

return Out;

} // end of domain shader

Triangle
Patch Mesh

Tessellated
Mesh 3

Displaced
g Mesh

Displacement Map

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

Mesh Shader Pipeline

« Amplification Shader Stage - decides how Mesh Shader Stage - produces a semi-regular
many Mesh shader groups to run and passes tessellation pattern for each patch, and outputs
data to those groups comprise vertices and primitives

AN ALTERNATIVE TO THE GEOMETRY PIPELINE

Modern Game Engine - Theory and Practice RRBOOMING ~ | GAMES104

Real-Time Deformable Terrain

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

o

Dig a Hole in Terrain

Output 1 NaN
Vertex Position

O X 1 meter

Kill a Quad

Cull a terrain vertex by outputting NaN from the vertex shader
* projectedPosition /= (isHole ? 0 : 1)

Modern Game Engine - Theory and Practice [RBQAMING ~ GAMES104

Crazy Idea - Volumetric Representation

In 3D computer graphics, a voxel represents a value on a regular grid in three-dimensional space. As pixels in a 2D

bitmap, voxels themselves do not typically have their position (i.e. coordinates) explicitly encoded with their values

Modern Game Engine - Theory and Practice

BBOOMIHG 1
TECH

o

GAMES104

Marching Cubes

Slice k + 1 / / / /

+1,k+1 {i+1,i+1)4|)
{i,j, k+1) i-l-}[d}
P A
A ;(i,]+) /('H1.j+
Slice k // (i'j'k)// //(i“'j'k)/ /
s L INS

Q‘j \’ pixel
i

o

12

10

MARCHING CUBES: A HIGH RESOLUTION 3D SURFACE CONSTRUCTION ALGORITHM'; Computer Graphics, Volume 21, Number 4, July 1987

Modern Game Engine - Theory and Practice

BBOOMIHG
TECH

GAMES104

Transition Cell Lookup Table

Transvoxel Algorithm

« Constructs the triangulation of transition cells to form
a lookup table, and uses this lookup table to do the

triangulation of LOD voxel cubes

Lengyel, Eric. (2010). Voxel-Based Terrain for Real-Time Virtual Simulations.

Group B
62 cases

GroupC
130 cases

Group D
187 cases

GroupE
95 cases

Transition cells

512 distinct cases
73 equivclasses

Group A
20 cases

11 Biom g S R ,

- Ghost Rec Wlldlamds

Modern Game Engine - Theory and Practice RRBOOMING ~ | GAMES104

Terrain Materials

Base Color Normal Roughness Height

Material blending result

Modern Game Engine - Theory and Practice RRBOOMING ~ | GAMES104

Simple Texture Splatting

Smooth but unnatural

Simple Blending

float3 blend(float4 texturel, float al, floatd texture2, float a2)
{

return texturel.rgb * al + textureZ.rgh * al;

Modern Game Engine - Theory and Practice RRBOOMING ~ | GAMES104

Advanced Texture Splatting

Blending with Height Height Maps + Alpha Blending

12

1
08
06
04
02
0

Height Maps

float3 blend(float4 texture1, float height1, float4 texture2, float height2)

{
}

return height1 > height2 ? texture1.rgb : texture2.rgb;

Modern Game Engine - Theory and Practice RRBOOMING ~ | GAMES104

Advanced Texture Splatting - Biased

|
|
float3 blend(float4 texture1, float height1, float4 texture2, float height2) Links:
{ ' g ’ J https.//www.gamedeveloper.com/programming/advanc
floatldepth = 0.2; HEIght Bias ed-terrain-texture-splatting

float ma = max(texture1.a + height1, texture2.a + height2) - depth;
float b1 = max(texture1.a + height1 - ma, 0);

float b2 = max(texture2.a + height2 - ma, 0);

return (texture1.rgb * b1 + texture2.rgb * b2) / (b1 + b2);

Modern Game Engine - Theory and Practice RRBOOMING ~ | GAMES104

Sampling from Material Texture Array

Material Parameters

Albedo Texture Index

Normal Texture Index

Height+ Texture Index

Rotation, Tiling,
Burning etc.

// get material index from splat map, and sample several directions of material for blending

int base_material_index = sampleSplatMap(base_material_uv);
int right_material_ index = samplesplatMap(right_material uv);
int up_material index = samplesplatMap(up_material uv);

int rightup material index = samplesplatMap(rightup material uv);

// get material parameters

float4 base_ albedo = sampleAlbedoMapArray(base map uv, base material index);
float3 base normal = sampleNormalMapArray(base_map uv, base material index);
float base_height = sampleHeightMapArray(base_map_uv, base_material_index);

float4 right_albedo = ...
float3 right normal = ...
float right_height cee

// get blend weights according to material heights and use bilinear interpolation
float blend weights = getBlendWeights(base_height, right_height, up height, rightup height);

// blend base, up, right, rightup layer data to get a smooth shading result
float4 blend albedo =

blendAlbedoWithWeights(blend weights, base albedo, right albedo, up_albedo, rightup_albedo);
float3 blend normal =

blendNormalWithWeights(blend weights, base normal, right normal, up_normal, rightup_normal);

Modern Game Engine - Theory and Practice RRBOOMING ~ | GAMES104

Parallax and Displacement Mapping

Parallax Mapping:

Due to the height of the
surface, the eye sees
point B instead of point
A. It creates a sense of
dimensionality

—_ e —— P

Color mapping Bump mapping Paralla mapping Displacement
mapping

Modern Game Engine - Theory and Practice RRBOOMING ~ | GAMES104

Expensive Material Blending

* Many Texturing - Low performance when Huge Splat Map - We only see a small set of
multiple materials are sampled too many times terrain, but we load splat maps for 100 square km

into video memory

Splat Map Material Description Material Sample

Splat Map Material Description Material Sample

Material Sample

Splat Map Material Description Material Sample

Splat Map Material Description Material Sample

4x3 = 12 Samples 16 Samples

4 Samples

Modern Game Engine - Theory and Practice RRBOOMING ~ | GAMES104

Virtual Texture

« Build a virtual indexed texture to represent all
blended terrain materials for whole scene

* Only load materials data of tiles based on view-
depend LOD

* Pre-bake materials blending into tile and store
them into physical textures

virtual texture mipmap

physical

cxture
g I
(

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

VT Implementation, DirectStorage & DMA

Flow of GPU assets (with DirectStorage for Windows)

1 System 2 GPU Memory
e Memory (VRAM)
Storage Read (RAM) GPU Copy

Optimized storage stack)

. memory optical
feedback Analysis cache storage 3

- GPU supports far higher decompression bandwidths GPU Decompress
key for both streaming and load time scenarios

- CPU savings significant at next-gen 10 rates

- GPU can support constant maxed |0 rates for load time scenarios

- Data is at its ‘smallest’ until the destination

DirectStorage

(=1 5] (=1 [

CPU CPU

CPU based cache management among disk,
main memory and video memory

Without GPUDirect Storage With GPUDirect Storage

[=1 system Memory NVMe D PCle Switch GPUDirect Storage Béiifica biiffei PCle

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

Floating-point Precision Error

S|gn exponent (8 blts) fraction (23 bits)

| |o|1|1|1|1|1| |o|o|1|o|o|o|o|0|o|o|o|o|o|o|0| [o[o]oo]o[o]o |o| 0.15625

31 30 2322 (bit index) 0
exponent IEEE 754 ﬂoat fraction
sign (11 bit) (52 bit)
|
L””””” ||||||I|||||l|l|||||||I|||||I|I|||||||l|||||l|l||||
63

* |EEE 754 double

Precision of IEEE754 Floating Point Values

O B e
G- - - - - - bemmmeeebmeemebeeeeeebee oot eeooooo| —— |EEE754 Single Precision (32-bit)H

10° oeoooit : : : : i __| —=—IEEE754 Double-Precision (64-bit

Floating Point Precision

Floating-point error caused artifacts while camera and
object in large value (from 1m to 60,000km)

16 10 10° 10° 10* 16° 10° 100 100 10° 10®° 10° 10°
Floating Point Value

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

»

Camera-Relative Rendering

« Translates objects by the negated world space
camera position before any other geometric
transformations affect them

It then sets the world space camera position to 0

and modifies all relevant matrices accordingly

// camera relative
foreach render object in render objects .
. — - Render a whole galaxy :-)
render object.m position -= render camera.m positionj;
updateRenderObjectTransform();

}

render camera.m position = Vector3(0.0, 0.0, 0.0);
updateRenderViewProjectionMatrix();

grass)

¥
trees,

=4 ¥
/]

ith other world elements (rocks

& PN
ion w

Integrat

det e 4

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

Tree Rendering

Tree Rendering LODs

Modern Game Engine - Theory and Practice

BOOMING
[Rear GAMES104

Decorator Rendering

R
‘«.w

NI ————
oA

Decorator Rendering LODs

Modern Game Engine - Theory and Practice RRBOOMING ~ | GAMES104

Road and Decals Rendering

Decals

Spline-based Road Editing and
Sculpturing Height Field

Splatting Road and Decals on Virtual Texture

File Editor View Tools Window Debug Setting Plugin Help

2 E&a& B - # 0O <« &|+|C a7 o | ® @ Default . o [« e @ : O] " .
Scale: 1
Scene ¥ Level... Debug |=r|iﬁ!g: Terrai...
» 4 Import height map
2 Water level: 0 Altitude: 500
Select file: CAUsers\linjing.bao\Desktop\hei (i)

b Import color map

BlockSelection ® TileSelection (SetBaseBlock

Show Walkable Area
Show Selected Block 100

Adjust the selection area height: 0 Adjust

setWalkable —IEEE— setUnWalkable

Mode: Draw |Clear

Target: Al Selected

Brush

Radius: —® 2843
Strength! i) 036
Tree Brush

MinScale: el 80
MaxScale: @ 120

o < Terrain Editing.in.Game Engine

Red Dead Redemption 2

Captured on PS5™ b

ELDEN RING

Modern Game Engine - Theory and Practice RRBOOMING ~ | GAMES104

How to "Paint" Everything in the Sky

Atmosphere

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

3

Analytic Atmosphere Appearance Modeling

F(0,v) =(1 +Aem§-|-_ﬁ._(ﬁ") (C + De®'+
+FCOS27+G'X(H,’Y)—|—I'COS% 6)

Ly =TF(6,7) - Lmx

Photograph
Pros

« Calculation is simple and efficient

Cons
« Limited to ground view

« Atmosphere parameters can’t be

changed freely

Rendering
An Analytic Model for Full Spectral Sky-dome Radiance, ACM Trans 2012

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

Participating Media Atmosphere

* Volume filled with particles
O Nitkogen 78%

(JOXs(/)gen 21%

* Interact differently with light depending on its composition

D Carbon
dioxide 1%
CO2

medium interaction

.

incoming light outgoing light

Cloud Aerosol

Droplet Rain

Small Snow
ice

Graupel Hail

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

How Light Interacts with Participating Media Particles?

f//J 2 2

— o s N

Absorption Out-scattering Emission In-scattering
dL(x,w) /dx=—o0.L(xw) —osL(x,w) Oale(X,W) o L fr(xw,w)L(xw')dw'
O 4 Absorption Coefficient O Scattering Coefficient l
Radiative Transfer Equation (RTE) Phase Function

Extinction Coefficient 0:(X) = 04(X) + 05(X)

dL(x,w) [dx =— oL (x,w) + og4le(x,w) + 0f| fp(X,ww")L(x,w")dw’
SZ

In-Scattering Function

Modern Game Engine - Theory and Practice [RBOOMING

. GAMES104

Volume Rendering Equation (VRE)

O ()]
\ Absorpuoﬁ\

)ut-scatterin

In-scatterin
Camera s ()

d

L(P,w) =[T(x)[0g Le(X,w) + 05-L;(x,w)]dx +T(M)L(M,w)
x=0
P
T _ —f ot(s)ds Transmittance: the net reduction factor from absorption
(X) =€ X and out-scattering

Li(x,w) = fsz foxw,w)L(x,w')dw" The net increase factor from in-scattering

Modern Game Engine - Theory and Practice

BBOOMIHG :
TECH

GAMES104

Real Physics in Atmosphere

Sun Light

Air Molecules /

Aerosols +
Air Molecules

« Air Molecules
N2 02 03

 Aerosols &
Dust Sand AAy

Modern Game Engine - Theory and Practice

BOOMING
[Rear GAMES104

Scattering Types

« Rayleigh Scattering
Scattering of light by particles that have a diameter
much smaller than the wavelength of the radiation

(eg. air molecules)

* Mie scattering
Scattering of light by particles that have a diameter
similar to or larger than the wavelength of the incident

light (eg. aerosols)

Mie scattering

e,

aerosols

\W/
‘// \\olecules

Rayleigh Scattering

Modern Game Engine - Theory and Practice RRBOOMING ~ | GAMES104

Rayleigh Scattering

225" 315°

180" <0 8.000002 o
L

— Red (680 nm) Green (550 nm) — Blue (440 nm)

« Certain directions receive more light than others

Rayleigh Scattering Distribution
front-back symmetry

« Shorter wavelengths (eg. blue) are scattered more

strongly than longer wavelengths (eg. red)

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

Rayleigh Scattering Equation

Wavelength
n2(n?2—=1)2p(h) 1 -
oo
Density Geometry - M =] !}

A T ¢ R

. 8r®(n?—1)2p(h) 1 3
O_SRaer:gh(A’h) ot () p()_ FRay]e,'gh(e) L (-I +C0329) Red (680 nm) Green (550 nm) — Blue (440 nm)

4
3 N A 1orn Rayleigh Scattering Distribution

Scattering Coefficient Phase Function

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

Why Sky is Blue

Modern Game Engine - Theory and Practice

BOOMING
BTECH P GAMES104

Mie Scattering

» Scatter light of all wavelength nearly equally

« Exhibit a strong forward directivity

A m

Fill) m

180 1]

120 [21]
50

Mie Scattering Distribution

Modern Game Engine - Theory and Practice

BOOMING GAMES104

TECH
Mie Scattering Equation
/ Geometry Parameter
A 270
h) 1—|g? 1+ cos?6 R
S(A8,h) = n*(n* — Uzpl(\l) 2 @2 3 - -
+g (1—g?—2gcosh)3
/ i 180 (1]
3(n2 — 1)2 3 1—g? 1+ cos?8 »
oieamy = 2T P Fe@) = 5o — -
3 N 9 (1-g%-2gcosh)3

Scattering Coefficient

g > 0, scatters more forward

Mie scattering

Phase Function

0.y 0 -05

.75 | !| | 0.75

g <0, scatters more backward

g = 0, Rayleigh scattering

ut‘_\g#{?g___,z_/

50

Mie Scattering Distribution

Modern Game Engine - Theory and Practice

BOOMING
[RBOOMING * GAMESI04

Mie Scattering in Daily Life

« Exhibit a strong forward directivity (halo
effects around sun)

« Scatter light of all wavelength nearly
equally (fog effects)

Halo of Sun

Modern Game Engine - Theory and Practice BOOMING ~ . GAMES104

Variant Air Molecules Absorption
* Ozone (0O3)

Absorb strongly at longer wavelengths to filter out the reds, oranges, yellows

* Methane (CH4)
Well-known for absorbing red light

Blue sky near zenith on sunset Neptune covered by CH4

Modern Game Engine - Theory and Practice BOOMING ~ . GAMES104

Single Scattering vs. Multi Scattering

attenuation
o= 73] R
y 4 D {:.. r . N
4 . .I @ TECTTTRETTTERER) poees Q-"f?ﬁ;:f-f" I...:.“......n ,....-....1'1...1
single scattering multiple scattering

B B
L= [Lp_sads Losr= [[La(pv')-S(AB)-T(p > A)dv'ds
A A J4n

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

Single Scattering vs. Multi Scattering

Single Scattering Multi Scattering

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

Ray Marching
« Ray marching is a popular method to integrate function along a path
« We use ray marching to calculate final radiance for a given point by single scattering

« The integrated radiance is usually stored in look-up tables (LUT)

step1 step2

/‘ I I |
Y
Each step makes some

N
calculations (eg. lighting) z Sum all steps'
n=1 results together Single Scattering Integration

B
Len| S(AB,h)-(T(sun—>P) +T(P—> A))ds
A

Modern Game Engine - Theory and Practice RRBOOMING ~ | GAMES104

Precomputed Atmospheric Scattering

P
Atmosphere T(X) — e_fx or(s)ds
Top

\

Transmittance LUT

hez

c
2
()
T
0)
Atmosphere | ViewZenithCosAngle U cos (Bmax)
Bottom
T(X,—>B)
T(Xy,—>Xp) = T(X.—> B)

https://ebruneton.github.io/precomputed atmospheric_scattering/

Modern Game Engine - Theory and Practice [RBQAMING ~ GAMES104

Precomputed Atmospheric Scattering

Single Scattering LUT
Store 4D table in 3D Texture Array

ViewZenithCosAngle [

o

(Vis)

B

Lsun| S(AB,h)-(T(sun—>P)+T(P—>A))ds ViewSunCosAngle x 8, SunZenithCosAngle x 32
A

L(X,—>Xm) =L(X, =>B) = L(X;n—> B)-T(Xy —> Xpm)

Modern Game Engine - Theory and Practice

BOOMING
[Rear GAMES104

Precomputed Atmospheric Scattering
Multi Scattering LUT

Transmittance LUT (u,r) \ Scattered Light
Integration

E

N-order Scattering

Single Scattering LUT (V,Us,l,r)

Multi Scattering LUT
(Vilsilsr)

=
-

i 0
-
/

-'..'-

-

Modern Game Engine - Theory and Practice BOOMING

GAMES104

Challenges of Precomputed Atmospheric Scattering

* Precomputation Cost
« Multi-scattering iterations are very expensive
« Hard to generate atmosphere LUT on low-end devices (ie. mobile)

« Authoring and Dynamic Adjustment of Environments
 Artist can't change scattering coefficients on the fly
« Hard to render effects like weather from sunny to rain fog, space travel among planets

* Runtime Rendering Cost

« Expensive per-pixel multi high dimensional texture sampling for transmittance LUT and multi

scattering LUT (always need to down-sample for efficiency)

A Scalable and Production Ready Sky and Atmosphere Rendering Technique
https://diglib.eg.org/bitstream/handle/10.1111/cgf14050/v39i4pp013-022.pdf

Modern Game Engine - Theory and Practice [RBQAMING ~ GAMES104

Production Friendly Quick Sky and Atmosphere Rendering

Simplify Multi-scattering Assumption Multi Scattering LUT
« Scattering events with order greater or equal to 2 are Top
executed using an isotropic phase function

 All points within the neighborhood of the position we

Altitude

currently shade receive the same amount of

second order scattered light

0 Sun / Zenith angle

n

 Visibility is ignored

Gny1 = G * fins

1
Fns =1+ fms + fou + Fong + ... = |
1 — fins

Wms =LZ“d order Fus

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

Production Friendly Quick Sky and Atmosphere Rendering

Fixed view position and sun position to remove 2 dimensions out of LUT

=
3

H

gle o

\/ |ewZer3ithAn

ViewZenithCosAngle

Planet ground

(V.us) 0 LightViewHorizonAngle$ 2"
ViewSunCosAngle x@ZenithCosAngle X 3D

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

»

Production Friendly Quick Sky and Atmosphere Rendering

« Generated a 3D LUT to evaluate aerial-perspective effects by ray marching

" 3D Aerial-Perspective LUT

View Zenith Angle

Distance to
Camera

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

Good Balance of Performance and Effect

PC Mobile

« Scalable from mobile to high-end PCs

PC
LUT Resolution Step count Render time
Transmittance 256 x 64 40 0.01ms
Sky-View 200 x 100 30 0.05ms
Aerial perspective 323 30 0.04ms
Multi-scattering 30 20 0.07ms
Bruneton Ours Path traced reference
Mobile (iPhone 6s)
LUT Resolution ~ Step count Render time g
4]
Transmittance 256 x 64 40 0.53ms
Sky-View 96 x 50 8 0.27ms
Aerial perspective 322 % 16 8 0.11ms =
Multi-scattering 392 20 0.12ms §

Performance for each step of method, as measured
on PC (NV 1080) and a mobile device (iPhone 6s)

Tiny planet

Video of Atmosphere Demo

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

e

i

n Paintll

.

Luke Howard, Meteorologist, 1802

Modern Game Engine - Theory and Practice

Cloud Type

N

B — . - ——— =
cirrostratus cirrus cirrocumulus

W PR e

altocumulus

altostratus

e dinsa. 2.

stratus stratocumulus cumulus

BBOOHIHG
TECH

cumulonimbus

GAMES104

Mit. Everest

8000m

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

Mesh-Based Cloud Modeling

Pros
* High quality

Cons
» Overall expensive
« Do not support dynamic weather

Modern Game Engine - Theory and Practice RRBOOMING ~ | GAMES104

Billboard Cloud

Pros
e Efficient

Cons
* Limited visual effect
« Limited cloud type

Modern Game Engine - Theory and Practice RRBOOMING ~ | GAMES104

Volumetric Cloud Modeling

Pros

* Realistic cloud shapes

« Large scale clouds possible

« Dynamic weather supported

* Dynamic volumetric lighting and shadowing

Cons
« Efficiency must be considered

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

o

Weather Texture

I

height Stratus Stratocumulus Cumulus

Modern Game Engine - Theory and Practice RRBOOMING ~ | GAMES104

Noise Functions

Perlin lee Grid Definition Worley Noise Voron0|

A‘Lv\‘_J' r &
b w N .
i k|
’L E r
s | - .

Dot Product

. "l

Inte rpol ation Sk https://thebookofshaders.com/12/

https://en.wikipedia.org/wiki/Perlin_noise

Modern Game Engine - Theory and Practice RRBOOMING ~ | GAMES104

Cloud Density Model

Basic Distribution Basic Shape More Details

RGBA channels 3 low resolution Worley
R Perlin-Worley

GBA layered Worley

DNjpm = dn, X 0.625 +dng x 0.25 4 dny, x 0.125

SNyample = R(sny, (sng % 0.625+ snp x 0.25+sn, x 0.125) -1, 1, 0, 1)

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

Rendering Cloud by Ray Marching

Step 1 : Cast ray for each screen pixel

Step 3 : Dense step sampling inside cloud Step 4 : Gather radiance scattered from sun

Video of Volume Cloud

Modern Game Engine - Theory and Practice [RBOOMING ~ GAMES104

Pilot Engine V0.0.2 Released - 12 April

Bugfixes

* Fixed the transform of rigid bodies of objects

* Fixed crashes when reloading current level

+ Fixed transforming objects by dragging axes of Transform — Component in Component Details Panel
» Fixed specular calculation when roughness is 0

* Fixed compilation and crashes on M1 macOS

PILOT

Game engine

Optimizations
+ Optimized the display performance of the file tree in File Content Panel
* Optimized the coloring of axes of Transform Component in Component Details Panel

» Prefer independent graphics card when initializing Vulkan

Contributors

DEOMECHILRO LE00 " QEQ

ShenMian, KSkun, and 19 other contributors

Modern Game Engine - Theory and Practice [RBOOMING

GAMES104

Optimization of Course Arrangement

Take 1 week break every 3 lectures from lecture08

» The course team needs a break to better prepare for the course

« Leave more time for students to digest knowledge and catch up with homework

B

Modern Game Engine - Theory and Practice [RBOOMING GAMES104

Q&A

Modern Game Engine - Theory and Practice

BOOMING
[Rear GAMES104

Lecture 06 Contributor

. =
o=
ET
cNEH
. B

Jason
L+
BOOK
MANDY

a5

AR
Leon
Shine

RS

Judy

Modern Game Engine — Theory and Practice

BOOMING
TECH

GAMES104

Enjoy ;)
Coding

Course Wechat

Follow us for
further information

