Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Voice from Communities

« Will MetaParser be open-source?
« Will we keep updating Wiki?

« Could Wang Xi make a video from professional’s perspective to explain the bugs in the hottest
games?

« We will have a voting campaign for the naming of Mini Engine later this week. The name of the Mini
Engine will be decided by our community!

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Pilot Engine V0.0.5 Released - 24 May PILOT

New Feature Game engine
e EXAA Jiang Dunchun
jiangdunchun

Refactoring
* Framework « Editor

» replaced singleton by global context « Separated Ul and Input layer

< component system architecture * Mouse events (selecting, selection axis, camera speed
« Rendering adjusting)

* swap data context + Keyboard events (camera moving, deleting)

« RHI, RenderScene, RenderResource, RenderPipeline + Switching between Editor Mode and Game Mode

« Separated Vulkan-related logic
« Decoupled editor Ul and render logic
Optimizations

* Added compile database to optimize development environment

Contributors

-+ 90: %0 %

hyv1001, boooooommmmmm, and 9 other contributors

P -

Modern Game Engine - Theory and Practice BORHMG T GAMES104

1M R

Lecture 10

Physics System

Basic Concepts

~Sullivan: You know, you don t have to hit

PhyS|cs In Gaqﬁi /4) Physq‘@'alfehrrtmtlon

\\»

ERER S Wl 1:34 OV « =
— ROUND 2
B =
3 T _
= @ yBombz ¢)
[=
= P51

Physics in Games (2/4Dyparrgic m,\@o@em.,s Sy

=
Physics in Games (3/4) — Realistic Interaction

D7 Lieuadécouvrir

- -
e Al o

ames (4/

Physics I

H -

4) — Artistic

T k-

—

Outline of Physics System

@4 Yy 024

Basic Concepts Applications

» Physics Actors and Shapes « Character Controller

« Forces « Ragdoll

 Movements « Destruction

* Rigid Body Dynamics « Cloth

« Collision Detection * Vehicle

« Collision Resolution « Advanced Physics : PBD

« Scene Query
 Efficiency, Accuracy, and Determinism

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Physics Actors and Shapes

A
-
)
=

ICS

!

e
&

Modern Game Engine - Theory and Practice BOOMING = | GAMES104

Actor — Static

Modern Game Engine - Theory and Practice BOOMING * | GAMES104

Actor — Dynamic

Modern Game Engine - Theory and Practice BOMING ", GAMESIO4

Trigger

 Like static actor, not moving
» But not blocking

* Notifies when actors enter or exit

13

Modern Game Engine - Theory and Practice BOOMING ~ . GAMES104

Physics Law is Unbreakable, But in Game...

= Elon Musk @ @elonmusk - 27 Dec 2021
Replying to @PPathole
People are able to break any laws made by humans, but none made by

physics

O 1,012 131 1.330) 11.3K i

Modern Game Engine - Theory and Practice BOOMING = | GAMES104
v

Actor — Kinematic (No Physics Law)

Modern Game Engine - Theory and Practice BOOMING -

TECH

GAMES104

Kinematic Actors are Troublemakers
Tp—

N
Eiily Access CLATIIROD 'I'.‘\‘ ‘ss 3 [|, ” . } CLIPBY
¥ v ' Sounders8901

-
\

&

Shortcuty
Health - e . . » - -
Y ' 2) —
. U
aAl IaFAL UK

Modern Game Engine - Theory and Practice BOOMING * | GAMES104

Actor — Summary

Static Actor

* Not moving

Dynamic Actor

« Can be affected by
forces/torques/impulses

Trigger

Kinematic Actor

 Ignoring physics rules

« Controlled by gameplay

logic directly

Modern Game Engine - Theory and Practice

BOOMING -
BOOMING | GAMES104

Actor Shapes

Spheres

Radius

Shape Origin

Convex Meshes

Capsules
'T Shape X-Axis

Radius

i Half Height

Shape origin

Triangle Meshes

Boxes
A
Shape X-Axis ————
Half-extents. X 1
>
Height Fields
Sample[0] Sample[1]
|
|
|
| ColumnScale

RowScale

Modern Game Engine - Theory and Practice BOOMING * | GAMES104

Shapes — Spheres

Radius

Shape Origin

Modern Game Engine - Theory and Practice BOOMING * | GAMES104

Shapes — Capsules

A
ﬁ Shape X-Axis

Radius

>l€

Half Height
e~

=~
U Shape origin

Modern Game Engine - Theory and Practice BOMING ", GAMESIO4

Shapes — Boxes

A
Shape X-Axis —_—

Half-extents.X I

0% >

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Shapes — Convex Meshes

A

Vertices and faces limits of

convex meshes

Modern Game Engine - Theory and Practice BOOMING = | GAMES104
v

Shapes - Triangle Meshes

« Dynamic actors can'’t have triangle meshes

Modern Game Engine - Theory and Practice BOOMING * | GAMES104

Shapes — Height Fields

Sample[0] Sample[1]

ColumnScale
RowScale

Modern Game Engine - Theory and Practice BOOMING * | GAMES104

Wrap Objects with Physics Shapes

» Approximated Wrapping
* Don'’t need to be perfect
« Simplicity
» Prefer simple shapes (avoid
triangle mesh if possible)

» Least shapes

Modern Game Engine - Theory and Practice BREQ2MING | GAMESIO4

Shape Properties — Mass and Density

Gomboc Shape

Modern Game Engine - Theory and Practice BOOMING * | GAMES104

Shape Properties - Center of Mass

|| _—
K R

() .
-I- \ -IVA—I-

Center of Mass Topple Not Topple

Modern Game Engine - Theory and Practice BOOMING = | GAMES104
v

Shape Properties — Friction & Restitution

Different Friction Parameters Different Restitution Parameters

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Forces

Modern Game Engine - Theory and Practice BOOMING * | GAMES104

Force

« We can apply forces to give dynamic
objects accelerations, therefore
affecting their movements

 Examples

« Gravity
* Drag

* Friction

Modern Game Engine - Theory and Practice BOOMING ~ . GAMES104

Force

« We can apply forces to give dynamic
objects accelerations, therefore
affecting their movements

 Examples

« Gravity
* Drag

* Friction

Modern Game Engine - Theory and Practice BOOMING * | GAMES104

Impulse

« We can change velocity of
actors immediately by
applying impulses

« E.g. simulating an explosion

Modern Game Engine - Theory and Practice BOOMING ~ . GAMES104

Impulse

« We can change velocity of
actors immediately by

applying impulses _
EXxplosion

« E.g. simulating an explosion Impulse

Explosion
Centerg,

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Movements

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Newton’s 1st Law of Motion

If there I1s no external force g STRIAIE

LI

v(t + At) = v(t) A :

x(t + At) = x(t) + v(t)At

gifexperiments.blogspot.com

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Newton’s 2st Law of Motion

If there Is external force

= Iy
F|l= mlc_i UUU0
A B
Force Mass Acceleration T T T
dv(t) dz)_C)(t) "t "t %

gifexperiments.blogspot.com

a(t)

dt dt?

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Movement under Constant Force

QL T
I

b,
ma
F

/m

v(t + At) = v(t) + a(t)At

1
x(t + At) = x(t) + v(t)At + > a(t)At?

Modern Game Engine - Theory and Practice

BOOMING -
BooM . GAMES104

Movement under Varying Force

Newton’s 2st Law of Motion

)
If there is varying external force g
> . LL
F=ma
- -
a=F/m

v(t+ At) =v(t) + ?

x(t+ At) = x(t) + ?

t, =ty + At

Time

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Movement under Varying Force

Newton’s 25t Law of Motion
)
If there is varying external force g
R LL
i=F/m & >
t+At Lo ti =ty + At
ﬁ(t + At) = ﬁ)(t) + J C_i(t’)dt, Time

t
t+At

x(t + At) = x(t) + j v(t")dt’

t

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Example of Simple Movement

* Position
* QOrientation
« Linear Velocity

« Angular Velocity

Earth In The Solar System

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Motion in Reality

Attime ¢t

- Position: x(t) 4R (D)
X

dt

- Linear Velocity: ¥(t) =

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Simulation in Game

Attime t
» Position: x(t) R

. o dx(¢)
- Linear Velocity: ¥(t) = =

Simulation Step
Given x(t), v(t)
Compute x(t + At), v(t + At)

At is the time step size

Modern Game Engine - Theory and Practice BOOMING * | GAMES104

Time Integration

x(ty) = x(ty) +f v(t)dt

Velocity

Modern Game Engine - Theory and Practice

BOOMING ~
BOOMING . GAMES104

Euler’s Method

400 =53) @ (&=
CAPVT VIL

METHODVS GENERALIS
INTEGRALIA QVAECVNQVE PROXIME
INVENIENDL j

Problema 36.
297.

mulae integralis cuiuscunque y=—=/Xdx valo-
lorem vero proxime indagarc. s

Solutio.

‘Cam omnis formula integralis per fe fit in-
determinata, ea femper ita determinari folet, vt fi
variabili x certus quidam valor puta a4 tribuatur,
jpfum integrale y—/Xdx datum valorem puta &
obtineat. Integratione igitur hoc modo determinata,
quacttio huc redit, fi variabili x alius quicunque
valor ab @ diwerfus tribuatur , valor, quem tum
integrale y fit habiturum, definiatur. Tribuamus
ergo ipfi x primo valorem parum ab @ difcrepan-
tem, puta x=a-+a, vt a fit quantitas valde par-
va: et quia fun®io X parum variatur, five pro x
fcribatur @ five @—+a eam tanquam conftantem
fpetare licebit, Hinc ergo formulae differentialis Xdx

- integrale

CAPVT VIL 201

ntegrale crit Xx -4~ Conft. =y; fed quia pofito
v=a fieri debet y—4&, et valor ipfius X quafi
nanct immutatus , erit ' Xa- Conft.=& , ideoque
Jonft.=b—Xa, vnde confequimur y=b—4X(x-a).
Quare fi ipfi x valorem a--a tribuamus, habebi-
nns valorem conucnientem ipfius y, qui fit =b4-8;
¢ iam fimili modo ex hoc cafu definire poteri-
nus y, fi ipfi x tribuatur alius valor parum fu-
xrans a-+a , pofito igitur a~+a loco x, valor
pfius X inde ortus denuo pro conftante haberi po-
erit, indeque fict y—=b—+ B+ X (x¥—a—a). Hanc
gitur operationem continuare licct quonsque lubue-
it , cujus ratio quo melius perfpiciatur , rem ita
spracfentemus 3

xr=a fiat X=A et y=}

x=ad" ..X=A ..y=V=b+4A(d’—0a)

x=a’ .. X=A”,.y=b/=¥4A’(d"~a")

x=a"" .. X=A".. y=¥"=b"+ A'd"-a")
etc.

bi valores a, a’, a”/, a’” etc. fecundum differen-
as valde paruas procedere ponuntur, Erit ergo
'=b-+A(a’—a) quippe in quam abit formula

wmuenta y=b—+4X(x—a) fit enim X=A, quia |

ponitur x=g, tum vero tribuitur ipfi x valor =a’;
cui refpondet y=4/, fimili modo erit ¥/=A’(a”-a"\;
tum &'/ =4" - A" (a"/~a’) etc. vti fupra pofui-

Ce mus.

CAPVT VIL

Reftituendo ergo valores praccedentes habee °

A'd'-a)

A(d"-a)+A(a"a

Ald-a'4-Afa"™a'H-A"(a"-a")

A(a™-a)-A'(d"a)+A"(@"a")+A(a"-a")
etc.

x quantumuis excedet a, feries a’, a”, a”//ete,

> continuetur ad ¥, et vltimum aggregatum

lorem ipfius y.

Coroll. 1.
98. Si incrementa , quibus x augetur, sze-
ftatuantur fcilicet @, vt fit d=a-4a,

- {22, &’/ =a+-3a, etc. quibus valoribus

ubftitutis funétio X abeat in A’,A”,A’’’etc.
limus illorum valorum puta g--na fit =x
vero X, erit
bt-a(A+ A/ A" 4-A" ... X)

Coroll. 2.
99. Valor ergo integralis y per fummatio-
feriei A, A’, A”....X, cuius termini

e ave.olils X formantur ponendo loco x fucceffiue
a,0-+4a,a42¢.....a+na,cruitur, Summa enim
illins feriei per differentiam @ multiplicata et ad &
adie¢ta dabit valorem ipfius y, qui ipfi ¥=a--na
refpondet.

Coroll. 3.

Institutiones calculi integralis (1768-70), p200-203.

Leonhard Euler
1707-1783

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Explicit (Forward) Euler’s Method (1/3)
Simplest estimation
Assume the force is constant

during the time step

B(ty) = B(to) + M (et
x(ty) = x(ty) +|v(ty)At
Current States
All quantities are known

Velocity

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Explicit (Forward) Euler’s Method (2/3)

Example:

A particle moving around a circle

At = 0.25

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Explicit (Forward) Euler’s Method (3/3)

The result of explicit Euler’s method explodes!

1.5. ¢
1} jamm -
Pros:
05 | « Easy to calculate, efficient
At = 1.00 o |

Cons:
05| * Poor stability
4l e st | Energy growing as time
N / progresses

-1.5 -1 -0.5 0 0.5 1 1.5

Modern Game Engine - Theory and Practice BOOMING ~ . GAMES104

Implicit (Backward) Euler’s Method (1/2)

r
JB(t:) = ¥(to) + M~YF (£)AL
x(ty) = x(ty) +|v(t)At

Future states
Unknown yet

Velocity

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Implicit (Backward) Euler’s Method (2/2)

The result of implicit Euler’s method spirals!

1.5 ¢
Pros:

« Unconditionally stable

1 - Y
- -
S -
- ~

0.5 t

Cons:
=Lt 8 | » Expensive to solve
05N « Challenging to implement

when non-linearity presents
* Energy attenuates as time
15 - - : r : pProgresses

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Semi-implicit Euler’s Method (1/2)

Explicit Euler’'s Method Implicit Euler’'s Method
(—> - — r—> - =
JB(t1) = B(to) + M~YF (to)At JB(t:) = ¥(to) + M~YF (¢)AL
| X(t) = X(8o) +[V(tp)AL | X(t1) = X(t) + P ()AL

N /7

Current States
v(t) = v(ty) + M~ YF (to)At
x(ty) = x(ty) +|v(ty)At
Future states

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Semi-implicit Euler’s Method (2/2)

The result approximates the circle well if the timestep is small enough

1.5 ¢

« Conditionally stable
« Easy to calculate, efficient
* Preserves energy as time progresses

At =1.00 o }

-1.5 -1 -0.5 0 0.5 1 1.5

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Rigid Body Dynamics

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Particle Dynamics

» Position X
| - adx
 Linear Velocity v = T
d
| o dp d?%
 Acceleration a=—=——
dt dt?
* Mass M
* Momentum p =MV
* Force F = d_p — Ma
dt

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Rigid body Dynamics

Besides linear values, rigid body dynamics have angular values
« Orientation R

« Angular velocity @

. Angular acceleration @

« Inertia tensor I

« Angular momentum L

« Torque T

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Orientation — R

A matrix R(t) = Irxy Tyy sz] or a quaternion g = [s, V]

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Angular Velocity — @

Direction of @ is the direction of the rotation axis

@ : rotated angle in radians

@) =2
ol =—
dt
. UXT
)

17112

Modern Game Engine - Theory and Practice

BOOMING
TECH

GAMES104

Angular Acceleration — &

dwo aXxr

dt |I7]?

KU
1
|
|

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Rotational Inertia— 1(1/2)

« Rotational inertia describes the distribution of mass for a rigid body

[=R-I,-RT

Angular Momentum Aligned With a Principle Axis
|

T_.
|

Modern Game Engine - Theory and Practice

BOOMING
BooM GAMES104

Rotational Inertia — 1(2/2)

Total Mass:

Center of Mass:

mq

m;

Center of Mass

‘—o—‘

(X1, Y1,%1)

Initial Inertia Tensor:

‘mq, (v + z£) + my(ys + z3)

—MmMiy1X1 —MyYy2Xo

—MyZ1X1 — MyZyrXy

m1
CoM = — , VA1, +
0] M(X1Y1Z1)

(x2,¥2,23)

M =mq; +m,

m;
M

—MX1Yy1 —MyX3)Y>2
my (x2 + z2) + my(x2 + z%)

—M4Z1Yy1 —MyZyY»

(X2,¥2,22)

—My1X1Z1 —MypXyZ;)

—M1Y1Z1 — My Y2
my (x? + i) + my(x3 + y2).

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Angular Momentum — T,

el

L=1

Modern Game Engine - Theory and Practice

BOOMING -
BooM . GAMES104

Torque — T

R
We denote external force F' exerted on position T
on the rigid body, therefore

. L o dL
T=T><F=—t

<l
|

i
X X
<!

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Summary

« Angular Values vs. Linear Values

« Orientation R « Position X
, ., UXT _ _ L dx
* Angular velocity W == » Linear velocity V=—
17|l dt
. , do axr | | o dB d%%
« Angular acceleration a = =-—— * Linearacceleraton g=—=——
de |7l dt dt?
* [nertia tensor I=R-1I,- RT « Mass M = Zmi
« Angular momentum [= lo * Linear momentum ﬁ = Mv
. dL . . dp
Torque r It Force F = 2P _ ma
dt dt

Modern Game Engine - Theory and Practice BOOMING ~ . GAMES104

Application — Billiard Dynamics (1/2)

Even though we have known the elements of rigid body dynamics, the physics
In a light billiard game is still complicated...

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Application — Billiard Dynamics (2/2)

Friction Impulse: Dp = Jﬁdt = mv,
Pressure Impulse: Dy = jﬁdt = mﬁy F
7 — - - y | 6
Ball Angular Momentum: [, = I, w = pr X 7f
Ball Linear Velocity: V= ﬁ)x + 133, — R

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Collision Detection

Modern Game Engine - Theory and Practice BOOMING ~ = GAMES104

TECH o

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Collision Detection — Two Phases

* Broad phase

* Find intersected rigid body AABBs

« Potential overlapped rigid body pairs
* Narrow phase

« Detect overlapping precisely

 (Generate contact information

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Broad Phase and Narrow Phase

-_— e s e - - o o o o oy

Space is parse e - -

. | e !
@ @

Narrow-Phase Stage Broad-Phase Stage

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Broad Phase

* Obijective
* Find intersected rigid body AABBs
« Potential overlapped rigid body pairs

« Two approaches
« Space partitioning
* |. e. Boundary Volume Hierarchy (BVH) Tree

« Sort and Sweep

Modern Game Engine - Theory and Practice RREQQMING © | GAMES104

5

Broad Phase - BVH Tree (1/2)

J
. B
B

Modern Game Engine - Theory and Practice BOOMING

BOOMING . GAMES104

Broad Phase - BVH Tree (2/2)
Recap: Dynamic BVH Tree

Ar'
S

Bottom-up . Insertion C
OIGIGIONOIGIGICONOIOIGCIO)

Modern Game Engine - Theory and Practice BOOMING ~ . GAMES104
Broad Phase - Sort and Sweep (1/2)
Sorting Stage (Initialize)
For each axis A
« Sort AABB bounds along each axis when IN
Initializing the scene C
- Check AABB bounds of actors along each axis B
o Apmax = Bmin indicates potential overlap of A
and B >
Cinin Cinax X
Bmin Bmax

Sorted x-bounds: [4,,,,

Bmin» Amax» |Bmax» Cmin» Cmax]

Overlaps Set: { (A, B) }

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Broad Phase - Sort and Sweep (2/2)
Sweeping Stage (Update)

* Only check swapping of bounds A
« temporal coherence
 |ocal steps from frame to frame

« Swapping of min and max indicates

add/delete potential overlap pair from ; l:l NCmin| 1Cmax; X
mi Pnax o

« Swapping of min and min or max and Sorted x-bounds: [Amn, Bm””"B"“"”lem’é’@'m’ Pm“"]
PPIng Overlaps Set: { (B, B),JB, C) }

overlaps set

max does not affect overlaps set
No change on overlaps set

Modern Game Engine - Theory and Practice

BOOMING ~ GAMES104

TECH

Narrow Phase — Objectives

contact normal
- Detect overlapping precisely ‘

A

[

Generate contact information

Contact manifold
« approximated with a set of contact points

Contact normal

Penetration depth

f—

conti:tp%l

penetration depth

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Narrow Phase — Approaches

« Three approaches
« Basic Shape Intersection Test
* Minkowski Difference-based Methods

« Separating Axis Theorem

Modern Game Engine - Theory and Practice BOOMING ~ . GAMES104

Basic Shape Intersection Test (1/3)

Sphere-Sphere Test

- - >
o Ove”ap: ICZ > C1| -1 =T <0 contact normal

« contact information: .
penetration depth

« contact normal: ¢, — ¢, /I¢, — ¢4l

« penetration depth: |c, — ¢;| — 1 — 1,

contact point

Modern Game Engine - Theory and Practice BOOMING ~ . GAMES104

Basic Shape Intersection Test (2/3)

contact normal
Sphere-Capsule Test

L is the closest point on the inner capsule segment

N contact point
« overlap: |C—L|—rg—1:<0 g

e contact information:

- -

» contactnormal: L — C/|L — C

penetration depth: |C — L| —rs — r¢

penetration depth

Modern Game Engine - Theory and Practice BOOMING * | GAMES104

Basic Shape Intersection Test (3/3)

contact normal

« Capsule-Capsule Test g

L, and L, are the closest points on the two segments /@
contact point

overlap: |L, — L;| -1, — 1, < 0

contact normal: Zz — Zl/|zz = z1|

penetration depth: |L, — L;| — 1, — 1>

penetration depth

Modern Game Engine - Theory and Practice BOMING ", GAMESIO4

Minkowski Difference-based Methods - Concepts

 Minkowski Sum
 Points from A + Points from B =

Points in Minkowski Sum of A and B

A@®B={d+b:d€AbEB)

A:{C_l)l, C_l)z}

B:{Bl, 1_9)2, 1_9)3}

A@B={C_l)1+l_?)1,al+l_?)2,C_l>1+l_9)3,6_l>2+l_9)1,a2+l_9)2,6_l>2+l_9>3}

Hermann MinkowskKi
1864 - 1909

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104
Minkowski Sum (1/3)
* Points from A + Points from B =
Points in Minkowski Sum of A and B
/N\|A®B

A®B={d+b:d€AbeB)

OI

Modern Game Engine - Theory and Practice

BOOMING
TECH

GAMES104

Minkowski Sum (2/3)

 Points from A + Points from B =

Points in Minkowski Sum of A and B

A®B={d+b:d€AbeB)

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104
Minkowski Sum (3/3)
« Points from A + Points from B =
Points in Minkowski Sum of A and B AD®B

A®B={d+b:d€AbeB)

OI

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Minkowski Sum - Convex Polygons

A®B={d+b:deAbEB) %\ // \\ By
A DB
B\ | ERRA
« Theorem \k / \
» For convex polygons A and B, [) ———o
A @ B is also a convex polygon 4 ®
1 4

* The vertices of A @ B are the sum of

the vertices of Aand B

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Minkowski Difference

* Points from A — Points from B =

Points in Minkowski Difference of A and B

A©B={d—-b:d€AbeB)

 Minkowski sum of A and mirrored B N
AS©B=A& (-B) "./{ \'x
N TS0 108 \
R R TN
=8 | /
OT\F:‘T T =~ PN
N\ \\

AN . | .
~ Ty |

\~\ 7‘

N
%

Modern Game Engine - Theory and Practice BOOMING ~ . GAMES104
Origin and Minkowski Difference
A©OB={d—-b:d€AbeB)
« Same pointin Aand B
« The origin is in the Minkowski Difference!
Seperated Case Overlapped Case
| | ~
L S \ P Z
n CeDb
LT T R e
‘ 4 e~ - / L’
D/l |0 O O O

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

GJK Algorithm — Walkthrough (Separation Case) (1/5)

 Determine iteration direction

« Find supporting points p, and pg
>, S : : C
« Add new point p, — pp to iteration B /([AOSB
simplex on Minkowski difference / ?
A
i /
PB O /
SN

Simplex Set: {C}

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

GJK Algorithm — Walkthrough (Separation Case) (2/5)

 Determine iteration direction

« Check if origin is in the simplex -

« Find nearest point to origin in C

the simplex |/ Y

* If nearest distance reduced, 5 "/ ’)

\

continue iterating 0/

 Find supporting points p, and pg DJ/\\

« Add new point p, — pp to iteration

simplex on Minkowski difference
Simplex Set: {C} D}

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

GJK Algorithm — Walkthrough (Separation Case) (3/5)

 Determine iteration direction

* Check if origin is in the simplex

* Find nearest point to origin in E C
the simplex \/ //’ / sl
 If nearest distance reduced, BVQ \
continue iterating = ~ 1/

* Find supporting points p, and pg

« Add new point p, — pp to iteration

simplex on Minkowski difference

Simplex Set: {C, D} E}

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104
GJK Algorithm — Walkthrough (Separation Case) (4/5)
* Determine iteration direction
* Check if origin is in the simplex
* Find nearest point to origin in the simplex E C
 If nearest distance reduced, continue / / / =P
o \ 1/ F // /
iterating B\
« Remove point having no contribution to the = ; //
new nearest point from simplex
DI ™~

Find supporting points p, and pg
Add new point p, — pg to iteration simplex on

Minkowski difference

Simplex Set: {D, B} E}

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

GJK Algorithm — Walkthrough (Separation Case) (5/5)

 Determine iteration direction

* Check if origin is in the simplex

« Find nearest point to origin in the simplex E
. . / AOB
* If nearest distance reduced, continue \7[=/
iterating BV / \

 Remove point having no contribution to the = or® /
new nearest point from simplex Z

Dl ™~

 Find supporting points p, and pg

« Add new point p, — pp to iteration simplex on

Minkowski difference Simplex Set: {D, E} F}

Modern Game Engine - Theory and Practice BOOMING

GAMES104

GJK Algorithm — Walkthrough (Overlapped Case) (1/3)

 Determine iteration direction

« Find supporting points p, and pg]
« Add new point p, — pg to iteration simplex H
)

on Minkowski difference

N
A©B

Simplex Set: {C}

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

GJK Algorithm — Walkthrough (Overlapped Case) (2/3)

« Determine iteration direction B 2
« Check if origin is in the simplex T//
* Find nearest point to origin in '
the simplex
« If nearest distance reduced, C

continue iterating %\

 Find supporting points p, and pg

. Add new point p, — pp to iteration /

simplex on Minkowski difference e

Simplex Set: {C} D}

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

GJK Algorithm — Walkthrough (Overlapped Case) (3/3)

« Determine iteration direction B

* Check if origin is in the simplex ey |

* Find nearest point to origin in

the simplex |

. If nearest distance reduced., C

continue iterating 0

 Find supporting points p, and pg [—

« Add new point p, — pg to iteration /

simplex on Minkowski difference ~
AS B

D

Simplex Set: {C, D} E}

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Separating Axis Theorem (SAT) - Convexity

« Edges can separate two convex polygons due to convexity

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Separating Axis Theorem (SAT) — Necessity for overlapping

* An edges failed to separate the polygons is not sufficient for overlapping

« All edges must be checked until a separating axis is found

\
\

\ /

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Separating Axis Theorem (SAT) - Separating Criteria

d<0

Penetration depth is |d|

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Separating Axis Theorem (SAT) — 2D Case (1/2)

« Check edges from A and vertices from B

* Check vertices from A and edges from B A

All edges from B failed

| @Y @Y//

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Separating Axis Theorem (SAT) — 2D Case (2/2)

Algorithm 1 SAT-2D

1: for each edge e4 from A do

.o overlapped <« false

3: for each vertex vp from B do

4: if projection of vp on normal of e4 < 0 then
5: overlapped <= true, break

6: end if

i end for —
8: if not overlapped then

9: A and B are separated, terminate

10: end if

11: end for A
12: for each edge e from B do

13: overlapped <« false

14: for each vertex v4 from A do

15: if projection of v4 on normal of e < 0 then
16: overlapped < true, break

17: end if

18: end for

19: if not overlapped then
20: A and B are separated, terminate
21: end if

22: end for
23: A and B are overlapped, terminate

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Separating Axis Theorem (SAT) — Optimization for 2D Case

Algorithm 2 SAT-2D-Optimized

1: overlapped < false
¢ CheCk edgeS from A and Vertices from B 2: for (3:-110;1 vertex vg from B do

3: if projection of vp on separating_axis A < (0 then
 Check vertices from A and edgeS from B 1: overlapped < true, break
5 end if
6: end for
7: if not overlapped then

Optl mization h A. and B are separated, terminate
9: end if
« Cache the last separating axis 650K SHEN SHiee ot ol 2100
11: overlapped < false
12: for each vertex vp from B do
13: if projection of vg on normal of e4 < (0 then
14: overlapped <« true, break
15: end if
16: end for
17: if not overlapped then
18: update separating_axis_A < normal of e 4
19: A and B are separated, terminate
20: end if
21: end for

22: Similar for edges from B

Modern Game Engine - Theory and Practice

BOOMING
TECH

GAMES104

Separating Axis Theorem (SAT) — 3D Case

» Check faces from A and vertices from B
« Separating axis: face normals of A

» Check vertices from A and faces from B
« Separating axis: face normals of B

« Check edges from A and edges from B

« Separating axis: cross product of two edges

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Collision Resolution

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Collision Resolution

« We have determined collisions precisely
* We have obtained collision information

 Next, let’'s deal with collision resolution

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Approaches

* Three approaches
* Applying Penalty Force
« Solving Velocity Constraints

« Solving Position Constraints (will be covered in the next lecture)

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Applying Penalty Force

* Rarely used in games
« Large forces and small time steps are

needed to make colliding actors look rigid

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Solving Constraints (1/2)

* Modelling constraints based on Lagrangian
mechanics
« Collision constraints
* Non-penetration
« Restitution
« Friction

* |terative solver

Joseph-Louis Lagrange
(1736 - 1813)

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Solving constraints (2/2)

Void Rigid body J View
| Forees | Ve Updated | RV -
Velocity P
N rigid bodyfimpulse

Constraint' 1o, L YV J/ d

Constraint L L Constraint 1 Y
—

Velocity Impulse Apply Xnew
> VVelocity y

Xold

Modern Game Engine - Theory and Practice

BOOMING ~ GAMES104

TECH
Solving Velocity Constraints
Approaches: 1
« Sequential impulses . |
 Semi-implicit integration PCl@ &PCZ
* Non-linear Gauss-Seidel Method
Characteristics:
* Fast, stable for most cases 1
« Commonly used in most physics engines 13)61 1 1_3)62
- 4 e
Pcl,\ ,\Pcz

C
Q

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Scene Query

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Raycast (1/3)

 Intersect a user-defined ray with the whole scene

* Point, direction, distance and query mode can be defined

Modern Game Engine - Theory and Practice BOMING ", GAMESIO4

Raycast (2/3)

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Raycast (3/3)

e IMutiple hits looks for all blocking hits, picks the one with the minimum distance
 |Closest hit looks for all blocking hits
* JAny nit any hit encountered will do

@ A ~—9
A 7 B 7 -

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Sweep (1/2)

« Geometrically similar to raycast
« Shape and pose can be defined

* Box, sphere, capsule and convex

Modern Game Engine - Theory and Practice BOOMING ~ . GAMES104

Sweep (2/2)

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Overlap (1/2)

« Search aregion enclosed by a
specified shape for any overlapping
objects in the scene

* Box, sphere, capsule and convex

Modern Game Engine - Theory and Practice BOOMING * | GAMES104

Overlap (2/2)

Modern Game Engine - Theory and Practice BOMING ", GAMESIO4

Collision Group

« Actor has a collision group property
Player : Pawn
Obstacle : Static
Movable box : Dynamic

Trigger box : Trigger

« Scene query can filter collision groups
Player moving query collision group:
(Pawn, Static, Dynamic)
Trigger query collision group:

(Pawn)

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Efficiency, Accuracy,
and Determinism

Modern Game Engine - Theory and Practice BOOMING * | GAMES104

Simulation Optimization — Island

Island 3

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Simulation Optimization — Sleeping

« Simulating and solving all rigid bodies uses lots of resources
 Introducing sleeping

* Arigid body does not

move for a period of time 14 A\ , z 7 z
« Until some external force E z
acts on it _ /\

Modern Game Engine - Theory and Practice

BOOMING
BOOMING . GAMES104

Continuous Collision Detection (1/4)

DISTRITO'CARITAESIPUERTO ESPADARD %
v o > " y ol

TIME UNTIL DETONATION

e koo
R, L) 4308

i
I

|
. —
e v

e
N
/ & \ i
/ — =
[T
‘« ,\?M&(f’-t CC10 SHOTGUN
o 04

SH £ ARleece

-

e)
) /',’HI'AI—,- AN
: /

=

FIRE WEAPON - HOLD ' or TAP B
FIRE STUN GRENADE - TAP @&

120

Modern Game Engine - Theory and Practice BOOMING * | GAMES104

Continuous Collision Detection (2/4)

« Thin obstacle vs. fast moving actors

 Tunneling

- -

1% 1%

> >

/’—~\\ /,—5\\
/ \ / \
\ \
_,// _,//

t t + At

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Continuous Collision Detection (3/4)

 Solution to tunnelling

Let it be — some thing unremarkable Make the floor thicker — boundary air wall

* | ™

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Continuous Collision Detection (4/4)
* Time-of-Impact (TOI) — Conservative advancement

« Estimate a “safe” time substep A and B won't
collide
« Advance A and B by the “safe” substep

* Repeat until the distance is below a threshold

Modern Game Engine - Theory and Practice BOOMING * | GAMES104

Deterministic Simulation (1/4)

« Multiplayer game with gameplay-
Impacting physics

« Small error causes butterfly effect

* Synchronizing states requires
bandwidth

« Synchronizing inputs requires

deterministic simulations

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Deterministic Simulation (2/4)

Non-deterministic Simulation

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Deterministic Simulation (3/4)

Same old states + same inputs = same new states

Requirements
» Fixed step of physics simulation
» Deterministic simulation solving sequence

» Float point consistency

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Deterministic Simulation (4/4)

Deterministic Simulation

. IPBY
"%~ NephiRoth666

_ , . : .z
GAMESPROUT . | OR"?ON

ZCRO DI\WN

Modern Game Engine - Theory and Practice BOOMING ~ | GAMES104

Lecture 10 Contributor

- =R - BT - Olorin - Hoya

- IR - K& - WNE - SARLEIE
- B N Y] L AL
- BOOK - Qiuu . mw oy

- Wood - Adam - ANTIEEsE Kun

Modern Game Engine - Theory and Practice BOOMING GAMES1I04

&A

Modern Game Engine — Theory and Practice TecH '~ GAMESIO4

Enjoy;)
Coding

kel
st

Course Wechat

Follow us for
further information

