
Modern Game Engine - Theory and Practice

1

Voice from Communities

• Will MetaParser be open-source?

• Will we keep updating Wiki?

• Could Wang Xi make a video from professional’s perspective to explain the bugs in the hottest

games?

• We will have a voting campaign for the naming of Mini Engine later this week. The name of the Mini

Engine will be decided by our community!

Modern Game Engine - Theory and Practice

• Editor

• Separated UI and Input layer

• Mouse events (selecting, selection axis, camera speed

adjusting)

• Keyboard events (camera moving, deleting)

• Switching between Editor Mode and Game Mode

Pilot Engine V0.0.5 Released - 24 May
New Feature

• FXAA

Refactoring

• Framework

• replaced singleton by global context

• component system architecture

• Rendering

• swap data context

• RHI, RenderScene, RenderResource, RenderPipeline

• Separated Vulkan-related logic

• Decoupled editor UI and render logic

Optimizations

• Added compile database to optimize development environment

Contributors

WANG XI GAMES 104 2022

Basic Concepts

Modern Game Engine - Theory and Practice

Physics System

Lecture 10

Modern Game Engine - Theory and Practice

Physics in Games (1/4) – Physical Intuition

Modern Game Engine - Theory and Practice

Physics in Games (2/4) – Dynamic Environment

Modern Game Engine - Theory and Practice

Physics in Games (3/4) – Realistic Interaction

Modern Game Engine - Theory and Practice

Physics in Games (4/4) – Artistic

Basic Concepts

• Physics Actors and Shapes

• Forces

• Movements

• Rigid Body Dynamics

• Collision Detection

• Collision Resolution

• Scene Query

• Efficiency, Accuracy, and Determinism

Applications

• Character Controller

• Ragdoll

• Destruction

• Cloth

• Vehicle

• Advanced Physics : PBD

Outline of Physics System

Modern Game Engine - Theory and Practice

Physics Actors and Shapes

Modern Game Engine - Theory and Practice

Visual World vs. Physics World

Modern Game Engine - Theory and Practice

Actor – Static

Modern Game Engine - Theory and Practice

Actor – Dynamic

Modern Game Engine - Theory and Practice

• Like static actor, not moving

• But not blocking

• Notifies when actors enter or exit

13

Trigger

Modern Game Engine - Theory and Practice

Physics Law is Unbreakable, But in Game…

Modern Game Engine - Theory and Practice

Actor – Kinematic (No Physics Law)

Modern Game Engine - Theory and Practice

Kinematic Actors are Troublemakers

Modern Game Engine - Theory and Practice

Static Actor

• Not moving

Dynamic Actor

• Can be affected by

forces/torques/impulses

Trigger

Kinematic Actor

• Ignoring physics rules

• Controlled by gameplay

logic directly

Actor – Summary

Modern Game Engine - Theory and Practice

Triangle Meshes

Spheres

Radius

Shape Origin

Half Height

Radius

Shape X-Axis

Shape origin

Capsules

Half-extents.X

Shape X-Axis

Boxes

RowScale

ColumnScale

Sample[1]
Sample[0]

Height FieldsConvex Meshes

Actor Shapes

Modern Game Engine - Theory and Practice

Radius

Shape Origin

Shapes – Spheres

Modern Game Engine - Theory and Practice

Half Height

Radius

Shape X-Axis

Shape origin

Shapes – Capsules

Modern Game Engine - Theory and Practice

Half-extents.X

Shape X-Axis

Shapes – Boxes

Modern Game Engine - Theory and Practice

Shapes – Convex Meshes

Vertices and faces limits of

convex meshes

Modern Game Engine - Theory and Practice

Shapes – Triangle Meshes

• Dynamic actors can’t have triangle meshes

Modern Game Engine - Theory and Practice

RowScale
ColumnScale

Sample[1]Sample[0]

Shapes – Height Fields

Modern Game Engine - Theory and Practice

• Approximated Wrapping

• Don’t need to be perfect

• Simplicity

• Prefer simple shapes (avoid

triangle mesh if possible)

• Least shapes

Wrap Objects with Physics Shapes

Modern Game Engine - Theory and Practice

Gomboc Shape

Shape Properties – Mass and Density

Modern Game Engine - Theory and Practice

Center of Mass Topple

Gravity

Not Topple

Gravity

Shape Properties - Center of Mass

Modern Game Engine - Theory and Practice

Different Friction Parameters Different Restitution Parameters

Shape Properties – Friction & Restitution

Modern Game Engine - Theory and Practice

Forces

Modern Game Engine - Theory and Practice

• We can apply forces to give dynamic

objects accelerations, therefore

affecting their movements

• Examples

• Gravity

• Drag

• Friction

• …

Force

Modern Game Engine - Theory and Practice

• We can apply forces to give dynamic

objects accelerations, therefore

affecting their movements

• Examples

• Gravity

• Drag

• Friction

• …

Drag

Gravity

Friction

Force

Modern Game Engine - Theory and Practice

• We can change velocity of

actors immediately by

applying impulses

• E.g. simulating an explosion

Impulse

Modern Game Engine - Theory and Practice

Explosion

Center

Explosion

Impulse

• We can change velocity of

actors immediately by

applying impulses

• E.g. simulating an explosion

Impulse

Modern Game Engine - Theory and Practice

Movements

Modern Game Engine - Theory and Practice

 𝑣 𝑡 + Δ𝑡 = 𝑣 𝑡

 𝑥 𝑡 + Δ𝑡 = 𝑥 𝑡 + 𝑣 𝑡 Δ𝑡

If there is no external force

Newton’s 1st Law of Motion

Modern Game Engine - Theory and Practice

 𝐹 = 𝑚 𝑎

If there is external force

Force Mass Acceleration

 𝑎 𝑡 =
d 𝑣 𝑡

d𝑡
=
d2 𝑥 𝑡

d𝑡2

Newton’s 2st Law of Motion

Modern Game Engine - Theory and Practice

Movement under Constant Force

 𝐹 = 𝑚 𝑎

 𝑎 = 𝐹 𝑚

 𝑣 𝑡 + Δ𝑡 = 𝑣 𝑡 + 𝑎 𝑡 Δ𝑡

 𝑥 𝑡 + Δ𝑡 = 𝑥 𝑡 + 𝑣 𝑡 Δ𝑡 +
1

2
 𝑎 𝑡 Δ𝑡2

Modern Game Engine - Theory and Practice

If there is varying external force

Newton’s 2st Law of Motion

 𝐹 = 𝑚 𝑎

 𝑎 = 𝐹 𝑚

 𝑣 𝑡 + Δ𝑡 = 𝑣 𝑡 + ?

 𝑥 𝑡 + Δ𝑡 = 𝑥 𝑡 + ?

Movement under Varying Force

𝑡0 𝑡1 = 𝑡0 + ∆𝑡

𝐹0

F
o
rc

e

Time

𝐹1

Modern Game Engine - Theory and Practice

If there is varying external force

Newton’s 2st Law of Motion

 𝐹 = 𝑚 𝑎

 𝑎 = 𝐹 𝑚

Movement under Varying Force

𝑡0 𝑡1 = 𝑡0 + ∆𝑡

𝐹0

F
o
rc

e

Time

𝐹1

 𝑥 𝑡 + Δ𝑡 = 𝑥 𝑡 +

𝑡

𝑡+Δ𝑡

 𝑣 𝑡′ d𝑡′

 𝑣 𝑡 + Δ𝑡 = 𝑣 𝑡 +

𝑡

𝑡+Δ𝑡

 𝑎 𝑡′ d𝑡′

Modern Game Engine - Theory and Practice

• Position

• Orientation

• Linear Velocity

• Angular Velocity

𝐗 𝑡 =

 𝑥 𝑡
𝑅 𝑡

 𝑣 𝑡

𝜔 𝑡
Earth In The Solar System

Example of Simple Movement

Modern Game Engine - Theory and Practice

At time

• Position:

• Linear Velocity:

𝑡

 𝑥 𝑡

 𝑣 𝑡 =
d 𝑥 𝑡

d𝑡

Motion in Reality

Modern Game Engine - Theory and Practice

At time

• Position:

• Linear Velocity:

𝑡

 𝑥 𝑡

 𝑣 𝑡 =
d 𝑥 𝑡

d𝑡

Simulation Step

Given ,

Compute ,

 𝑥 𝑡 𝑣 𝑡

 𝑥 𝑡 + Δ𝑡 𝑣 𝑡 + Δ𝑡

is the time step sizeΔ𝑡

Simulation in Game

Modern Game Engine - Theory and Practice

 𝑥 𝑡1 = 𝑥 𝑡0 +
𝑡0

𝑡1

 𝑣 𝑡 d𝑡

𝑡0 𝑡1 = 𝑡0 + ∆𝑡

𝑣0

V
e
lo

c
it
y

Time

𝑣1

Time Integration

Modern Game Engine - Theory and Practice

Institutiones calculi integralis (1768-70), p200-203.

Leonhard Euler

1707-1783

Euler’s Method

Modern Game Engine - Theory and Practice

𝑡0 𝑡1 = 𝑡0 + ∆𝑡

𝑣0

𝑣1

V
e
lo

c
it
y

Time
All quantities are known

Current States

Simplest estimation

Assume the force is constant

during the time step

 𝑣 𝑡1 = 𝑣 𝑡0 +𝑀

−1 𝐹 𝑡0 ∆𝑡

 𝑥 𝑡1 = 𝑥 𝑡0 + 𝑣 𝑡0 ∆𝑡

Explicit (Forward) Euler’s Method (1/3)

Modern Game Engine - Theory and Practice

1.5

1

0.5

0

-0.5

-1

-1.5
1.510.50-0.5-1-1.5

1.5

1

0.5

0

-0.5

-1

-1.5
1.510.50-0.5-1-1.5

1.5

1

0.5

0

-0.5

-1

-1.5
1.510.50-0.5-1-1.5

1.5

1

0.5

0

-0.5

-1

-1.5
1.510.50-0.5-1-1.5

1.5

1

0.5

0

-0.5

-1

-1.5
1.510.50-0.5-1-1.5

1.5

1

0.5

0

-0.5

-1

-1.5
1.510.50-0.5-1-1.5

1.5

1

0.5

0

-0.5

-1

-1.5
1.510.50-0.5-1-1.5

Δ𝑡 = 0.25

𝑟 = 1

Example:

A particle moving around a circle

Explicit (Forward) Euler’s Method (2/3)

Modern Game Engine - Theory and Practice

The result of explicit Euler’s method explodes!

Pros:

• Easy to calculate, efficient

Cons:

• Poor stability

• Energy growing as time

progresses

Explicit (Forward) Euler’s Method (3/3)

Modern Game Engine - Theory and Practice

 𝑣 𝑡1 = 𝑣 𝑡0 +𝑀

−1 𝐹 𝑡1 ∆𝑡

 𝑥 𝑡1 = 𝑥 𝑡0 + 𝑣 𝑡1 ∆𝑡

𝑡0 𝑡1 = 𝑡0 + ∆𝑡

𝑣0

V
e
lo

c
it
y

Time

𝑣1

Future states

Unknown yet

Implicit (Backward) Euler’s Method (1/2)

Modern Game Engine - Theory and Practice

Pros:

• Unconditionally stable

Cons:

• Expensive to solve

• Challenging to implement

when non-linearity presents

• Energy attenuates as time

progresses

The result of implicit Euler’s method spirals!

Implicit (Backward) Euler’s Method (2/2)

Modern Game Engine - Theory and Practice

 𝑣 𝑡1 = 𝑣 𝑡0 +𝑀

−1 𝐹 𝑡1 ∆𝑡

 𝑥 𝑡1 = 𝑥 𝑡0 + 𝑣 𝑡1 ∆𝑡

 𝑣 𝑡1 = 𝑣 𝑡0 +𝑀

−1 𝐹 𝑡0 ∆𝑡

 𝑥 𝑡1 = 𝑥 𝑡0 + 𝑣 𝑡1 ∆𝑡

Implicit Euler’s MethodExplicit Euler’s Method

 𝑣 𝑡1 = 𝑣 𝑡0 +𝑀

−1 𝐹 𝑡0 ∆𝑡

 𝑥 𝑡1 = 𝑥 𝑡0 + 𝑣 𝑡0 ∆𝑡

Future states

Current States

Semi-implicit Euler’s Method (1/2)

Modern Game Engine - Theory and Practice

• Conditionally stable

• Easy to calculate, efficient

• Preserves energy as time progresses

The result approximates the circle well if the timestep is small enough

Semi-implicit Euler’s Method (2/2)

Modern Game Engine - Theory and Practice

Rigid Body Dynamics

Modern Game Engine - Theory and Practice

• Position

• Linear Velocity

• Acceleration

• Mass

• Momentum

• Force

 𝑥

 𝑣 =
d 𝑥

d𝑡

 𝑎 =
d 𝑣

d𝑡
=
𝑑2 𝑥

𝑑𝑡2

𝑀

 𝑝 = 𝑀 𝑣

 𝐹 =
𝑑 𝑝

𝑑𝑡
= 𝑀 𝑎

Particle Dynamics

Modern Game Engine - Theory and Practice

• Orientation

• Angular velocity

• Angular acceleration

• Inertia tensor

• Angular momentum

• Torque

𝑹

𝐈

𝐿

 𝜏

 𝛼

𝜔

Besides linear values, rigid body dynamics have angular values

Rigid body Dynamics

Modern Game Engine - Theory and Practice

A matrix 𝐑 t =

𝑟𝑥𝑥 𝑟𝑦𝑥 𝑟𝑧𝑥
𝑟𝑥𝑦 𝑟𝑦𝑦 𝑟𝑧𝑦
𝑟𝑥𝑧 𝑟𝑦𝑧 𝑟𝑧𝑧

or a quaternion 𝑞 = [𝑠, 𝑣]

 𝑟𝑝

 𝑥𝑀 𝑥𝑀

 𝑟𝑝
′ = 𝑹 𝑟𝑝

x

y

z

x

y

z

rx
ry

rz

rx

ry
rz

Orientation – 𝑹

Modern Game Engine - Theory and Practice

Direction of 𝜔 is the direction of the rotation axis

𝜔

𝜔 =
 𝑣 × 𝑟

 𝑟 2

𝑟𝑝

𝑥𝑀

𝜔 𝑟
 𝑣

𝜔 =
𝑑𝜃

𝑑𝑡

𝜃 : rotated angle in radians

Angular Velocity –

Modern Game Engine - Theory and Practice

 𝛼

 𝛼 =
d𝜔

d𝑡
=
 𝑎 × 𝑟

 𝑟 2

𝑟𝑝

𝑥𝑀

 𝛼 𝑟
 𝑎

Angular Acceleration –

Modern Game Engine - Theory and Practice

Rotational Inertia – (1/2)

• Rotational inertia describes the distribution of mass for a rigid body

𝐈 = 𝐑 ∙ 𝐈𝟎 ∙ 𝐑
T

𝐈

Modern Game Engine - Theory and Practice

𝑚1 𝑚2

(𝑥1, 𝑦1, 𝑧1) (𝑥2, 𝑦2, 𝑧2)

Total Mass:

Center of Mass:

Initial Inertia Tensor:

𝑀 = 𝑚1 +𝑚2

𝐶𝑜𝑀 =
𝑚1
𝑀
𝑥1, 𝑦1, 𝑧1 +

𝑚2
𝑀
(𝑥2, 𝑦2, 𝑧2)

𝐼0 =

𝑚1 𝑦1
2 + 𝑧1

2 +𝑚2 𝑦2
2 + 𝑧2

2 −𝑚1𝑥1𝑦1 −𝑚2𝑥2𝑦2 −𝑚1𝑥1𝑧1 −𝑚2𝑥2𝑧2
−𝑚1𝑦1𝑥1 −𝑚2𝑦2𝑥2 𝑚1 𝑥1

2 + 𝑧1
2 +𝑚2 𝑥2

2 + 𝑧2
2 −𝑚1𝑦1𝑧1 −𝑚2𝑦2𝑧2

−𝑚1𝑧1𝑥1 −𝑚2𝑧2𝑥2 −𝑚1𝑧1𝑦1 −𝑚2𝑧2𝑦2 𝑚1 𝑥1
2 + 𝑦1

2 +𝑚2 𝑥2
2 + 𝑦2

2

Center of Mass

Rotational Inertia – (2/2)𝐈

Modern Game Engine - Theory and Practice

𝐿 = 𝐈𝜔

𝐿Angular Momentum –

Modern Game Engine - Theory and Practice

 𝜏

We denote external force 𝐹 exerted on position 𝑟
on the rigid body, therefore

 𝜏 = 𝑟 × 𝐹 =
𝑑𝐿

𝑑𝑡

𝝉 = 𝒓 × 𝑭
𝑳 = 𝒓 × 𝒑

Torque –

Modern Game Engine - Theory and Practice

• Angular Values vs. Linear Values

• Orientation

• Angular velocity

• Angular acceleration

• Inertia tensor

• Angular momentum

• Torque

• Position

• Linear velocity

• Linear acceleration

• Mass

• Linear momentum

• Force

𝑹

𝐈 = 𝐑 ∙ 𝐈𝟎 ∙ 𝐑
T

𝐿 = 𝑰𝜔

 𝜏 =
𝑑𝐿

𝑑𝑡

 𝛼 =
d𝜔

d𝑡
=
 𝑎 × 𝑟

 𝑟 2

𝜔 =
 𝑣 × 𝑟

 𝑟 2
 𝑣 =
d 𝑥

d𝑡

 𝑎 =
d 𝑣

d𝑡
=
𝑑2 𝑥

𝑑𝑡2

𝑀 = 𝑚𝑖

 𝑝 = 𝑀 𝑣

 𝐹 =
𝑑 𝑝

𝑑𝑡
= 𝑚 𝑎

 𝑥

Summary

Modern Game Engine - Theory and Practice

Even though we have known the elements of rigid body dynamics, the physics

in a light billiard game is still complicated…

Application – Billiard Dynamics (1/2)

Modern Game Engine - Theory and Practice

 𝑝𝐹 = 𝐹𝑑𝑡 = 𝑚 𝑣𝑥

 𝑝𝑁 = 𝑁𝑑𝑡 = 𝑚 𝑣𝑦

𝐿𝑏 = 𝑰𝑏𝜔 = 𝑝𝐹 × 𝑟𝐹

 𝑣 = 𝑣𝑥 + 𝑣𝑦

𝜔𝑁

 𝐹

 𝑣𝑦

 𝑣𝑥

 𝑣

𝑟
𝑥

𝑦

Friction Impulse:

Pressure Impulse:

Ball Angular Momentum:

Application – Billiard Dynamics (2/2)

Ball Linear Velocity:

Modern Game Engine - Theory and Practice

Collision Detection

Modern Game Engine - Theory and Practice

Modern Game Engine - Theory and Practice

• Broad phase

• Find intersected rigid body AABBs

• Potential overlapped rigid body pairs

• Narrow phase

• Detect overlapping precisely

• Generate contact information

Collision Detection – Two Phases

Modern Game Engine - Theory and Practice

Broad Phase and Narrow Phase

Modern Game Engine - Theory and Practice

• Objective

• Find intersected rigid body AABBs

• Potential overlapped rigid body pairs

• Two approaches

• Space partitioning

• i. e. Boundary Volume Hierarchy (BVH) Tree

• Sort and Sweep

Broad Phase

Modern Game Engine - Theory and Practice

Broad Phase - BVH Tree (1/2)

Modern Game Engine - Theory and Practice

Top-down

C D

Incremental tree-insertionBottom-up

Recap: Dynamic BVH Tree

Broad Phase - BVH Tree (2/2)

Modern Game Engine - Theory and Practice

Sorting Stage (Initialize)

𝑥

A

B

C

𝐴𝑚𝑖𝑛 𝐴𝑚𝑎𝑥
𝐵𝑚𝑖𝑛 𝐵𝑚𝑎𝑥

𝐶𝑚𝑖𝑛 𝐶𝑚𝑎𝑥

• Sort AABB bounds along each axis when

initializing the scene

• Check AABB bounds of actors along each axis

• indicates potential overlap of A

and B

𝐴𝑚𝑎𝑥 ≥ 𝐵𝑚𝑖𝑛

Overlaps Set: { (A, B) }

Sorted x-bounds: 𝐴𝑚𝑖𝑛, 𝐵𝑚𝑖𝑛, 𝐴𝑚𝑎𝑥, 𝐵𝑚𝑎𝑥, 𝐶𝑚𝑖𝑛, 𝐶𝑚𝑎𝑥

Broad Phase - Sort and Sweep (1/2)

For each axis

Modern Game Engine - Theory and Practice

Sweeping Stage (Update)

• Only check swapping of bounds

• temporal coherence

• local steps from frame to frame

• Swapping of min and max indicates

add/delete potential overlap pair from

overlaps set

• Swapping of min and min or max and

max does not affect overlaps set

𝑥

A
C

𝐴𝑚𝑖𝑛 𝐴𝑚𝑎𝑥

B

𝐵𝑚𝑖𝑛 𝐵𝑚𝑎𝑥
𝐶𝑚𝑖𝑛 𝐶𝑚𝑎𝑥

Overlaps Set: { (A, B) }Overlaps Set: { (A, B), (B, C) }Overlaps Set: { (B, C) }

No change on overlaps set

Sorted x-bounds: 𝐴𝑚𝑖𝑛, 𝐵𝑚𝑖𝑛, 𝐴𝑚𝑎𝑥, 𝐵𝑚𝑎𝑥, 𝐶𝑚𝑖𝑛, 𝐶𝑚𝑎𝑥𝐴𝑚𝑖𝑛, 𝐵𝑚𝑖𝑛, 𝐴𝑚𝑎𝑥, 𝐶𝑚𝑖𝑛, 𝐵𝑚𝑎𝑥 , 𝐶𝑚𝑎𝑥𝐴𝑚𝑖𝑛, 𝐴𝑚𝑎𝑥 , 𝐵𝑚𝑖𝑛, 𝐶𝑚𝑖𝑛, 𝐵𝑚𝑎𝑥, 𝐶𝑚𝑎𝑥𝐴𝑚𝑖𝑛, 𝐴𝑚𝑎𝑥 , 𝐵𝑚𝑖𝑛, 𝐶𝑚𝑖𝑛, 𝐶𝑚𝑎𝑥, 𝐵𝑚𝑎𝑥

Broad Phase - Sort and Sweep (2/2)

Modern Game Engine - Theory and Practice

penetration depth

contact points

contact normal

• Detect overlapping precisely

• Generate contact information

• Contact manifold

• approximated with a set of contact points

• Contact normal

• Penetration depth

Narrow Phase – Objectives

Modern Game Engine - Theory and Practice

• Three approaches

• Basic Shape Intersection Test

• Minkowski Difference-based Methods

• Separating Axis Theorem

Narrow Phase – Approaches

Modern Game Engine - Theory and Practice

Sphere-Sphere Test

• overlap: 𝑐2 − 𝑐1 − 𝑟1 − 𝑟2 ≤ 0

• contact information:

contact normal

penetration depth

contact point

 𝑐1 𝑐2

𝑟1 𝑟2

• contact normal: 𝑐2 − 𝑐1/ 𝑐2 − 𝑐1

• penetration depth: 𝑐2 − 𝑐1 − 𝑟1 − 𝑟2

Basic Shape Intersection Test (1/3)

Modern Game Engine - Theory and Practice

Sphere-Capsule Test

𝐿 is the closest point on the inner capsule segment

• overlap: 𝐶 − 𝐿 − 𝑟𝑆 − 𝑟𝐶 ≤ 0

• contact information:

• contact normal: 𝐿 − 𝐶/ 𝐿 − 𝐶

penetration depth: 𝐶 − 𝐿 − 𝑟𝑆 − 𝑟𝐶
 𝐶

𝑟𝑠

𝑟𝑐

𝐿

penetration depth

contact point

contact normal

Basic Shape Intersection Test (2/3)

Modern Game Engine - Theory and Practice

• Capsule-Capsule Test

𝐿1 and 𝐿2 are the closest points on the two segments

overlap: 𝐿2 − 𝐿1 − 𝑟1 − 𝑟2 ≤ 0

contact normal: 𝐿2 − 𝐿1/ 𝐿2 − 𝐿1

penetration depth: 𝐿2 − 𝐿1 − 𝑟1 − 𝑟2

𝑟2

penetration depth

contact point

contact normal

𝑟1

𝐿1
𝐿2

Basic Shape Intersection Test (3/3)

Modern Game Engine - Theory and Practice

• Minkowski Sum

• Points from A + Points from B =

Points in Minkowski Sum of A and B

𝐴: { 𝑎1, 𝑎2 }

𝐵: { 𝑏1, 𝑏2, 𝑏3}

𝐴⊕ 𝐵 = { 𝑎1 + 𝑏1, 𝑎1 + 𝑏2, 𝑎1 + 𝑏3, 𝑎2 + 𝑏1, 𝑎2 + 𝑏2, 𝑎2 + 𝑏3 }

𝐴 ⊕ 𝐵 = { 𝑎 + 𝑏: 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 }

Hermann Minkowski

1864 - 1909

Minkowski Difference-based Methods - Concepts

Modern Game Engine - Theory and Practice

• Points from A + Points from B =

Points in Minkowski Sum of A and B

𝐴⊕ 𝐵 = { 𝑎 + 𝑏: 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 }

A

B

O′

𝐴⊕𝐵

O

Minkowski Sum (1/3)

Modern Game Engine - Theory and Practice

A

B

O′

𝐴⊕𝐵

O

• Points from A + Points from B =

Points in Minkowski Sum of A and B

𝐴⊕ 𝐵 = { 𝑎 + 𝑏: 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 }

Minkowski Sum (2/3)

Modern Game Engine - Theory and Practice

A

B

O′

𝐴⊕𝐵

O

• Points from A + Points from B =

Points in Minkowski Sum of A and B

𝐴⊕ 𝐵 = { 𝑎 + 𝑏: 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 }

Minkowski Sum (3/3)

Modern Game Engine - Theory and Practice

• Theorem

𝐴⊕𝐵 = { 𝑎 + 𝑏: 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 }

• For convex polygons A and B,

𝐴⊕ 𝐵 is also a convex polygon A

B

𝐴⊕𝐵

O

• The vertices of 𝐴⊕ 𝐵 are the sum of

the vertices of A and B

Minkowski Sum - Convex Polygons

Modern Game Engine - Theory and Practice

• Points from A – Points from B =

Points in Minkowski Difference of A and B

• Minkowski sum of A and mirrored B

𝐴⊖ 𝐵 = { 𝑎 − 𝑏: 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 }

𝐴⊖ 𝐵 = 𝐴⊕ (−𝐵) B

-B

𝐴⊖𝐵

A

O′O

-B

Minkowski Difference

Modern Game Engine - Theory and Practice

• Same point in A and B

• The origin is in the Minkowski Difference!

𝐴⊖ 𝐵 = { 𝑎 − 𝑏: 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 }

Seperated Case Overlapped Case

Origin and Minkowski Difference

Modern Game Engine - Theory and Practice

Simplex Set: {C}

• Determine iteration direction

• Find supporting points 𝑝𝐴 and 𝑝𝐵

• Add new point 𝑝𝐴 − 𝑝𝐵 to iteration

simplex on Minkowski difference

B 𝐴⊖𝐵

A

O

C

 𝑝𝐴

 𝑝𝐵

GJK Algorithm – Walkthrough (Separation Case) (1/5)

Modern Game Engine - Theory and Practice

B

𝐴⊖𝐵

A

O

C

D

• Determine iteration direction

• Check if origin is in the simplex

• Find nearest point to origin in

the simplex

• If nearest distance reduced,

continue iterating

• Find supporting points 𝑝𝐴 and 𝑝𝐵

• Add new point 𝑝𝐴 − 𝑝𝐵 to iteration

simplex on Minkowski difference

Simplex Set: {C, D}

 𝑝𝐴

 𝑝𝐵

Simplex Set: {C}

GJK Algorithm – Walkthrough (Separation Case) (2/5)

Modern Game Engine - Theory and Practice

B

𝐴⊖𝐵

A

O

C

D

Simplex Set: {C, D, E}

E

 𝑝𝐴

 𝑝𝐵

Simplex Set: {C, D}

• Determine iteration direction

• Check if origin is in the simplex

• Find nearest point to origin in

the simplex

• If nearest distance reduced,

continue iterating

• Find supporting points 𝑝𝐴 and 𝑝𝐵

• Add new point 𝑝𝐴 − 𝑝𝐵 to iteration

simplex on Minkowski difference

GJK Algorithm – Walkthrough (Separation Case) (3/5)

Modern Game Engine - Theory and Practice

B

𝐴⊖𝐵

A

O

F

D

• Determine iteration direction

• Check if origin is in the simplex

• Find nearest point to origin in the simplex

• If nearest distance reduced, continue

iterating

• Remove point having no contribution to the

new nearest point from simplex

• Find supporting points 𝑝𝐴 and 𝑝𝐵

• Add new point 𝑝𝐴 − 𝑝𝐵 to iteration simplex on

Minkowski difference Simplex Set: {D, E, F}

E

 𝑝𝐴

 𝑝𝐵

C

Simplex Set: {C, D, E} Simplex Set: {D, E}

GJK Algorithm – Walkthrough (Separation Case) (4/5)

Modern Game Engine - Theory and Practice

B

𝐴⊖𝐵

A

O

F

D

• Determine iteration direction

• Check if origin is in the simplex

• Find nearest point to origin in the simplex

• If nearest distance reduced, continue

iterating

• Remove point having no contribution to the

new nearest point from simplex

• Find supporting points 𝑝𝐴 and 𝑝𝐵

• Add new point 𝑝𝐴 − 𝑝𝐵 to iteration simplex on

Minkowski difference Simplex Set: {D, E, F}

E

 𝑝𝐴

 𝑝𝐵

Simplex Set: {D, F}

GJK Algorithm – Walkthrough (Separation Case) (5/5)

Modern Game Engine - Theory and Practice

Simplex Set: {C}

• Determine iteration direction

• Find supporting points 𝑝𝐴 and 𝑝𝐵

• Add new point 𝑝𝐴 − 𝑝𝐵 to iteration simplex

on Minkowski difference

B

𝐴⊖𝐵

A

O

 𝑝𝐴

 𝑝𝐵

C

GJK Algorithm – Walkthrough (Overlapped Case) (1/3)

Modern Game Engine - Theory and Practice

Simplex Set: {C}

B

𝐴⊖𝐵

A

O

 𝑝𝐴

 𝑝𝐵

C

• Determine iteration direction

• Check if origin is in the simplex

• Find nearest point to origin in

the simplex

• If nearest distance reduced,

continue iterating

• Find supporting points 𝑝𝐴 and 𝑝𝐵

• Add new point 𝑝𝐴 − 𝑝𝐵 to iteration

simplex on Minkowski difference

D

Simplex Set: {C, D}

GJK Algorithm – Walkthrough (Overlapped Case) (2/3)

Modern Game Engine - Theory and Practice

B

𝐴⊖𝐵

A

O

 𝑝𝐴

 𝑝𝐵

C

• Determine iteration direction

• Check if origin is in the simplex

• Find nearest point to origin in

the simplex

• If nearest distance reduced,

continue iterating

• Find supporting points 𝑝𝐴 and 𝑝𝐵

• Add new point 𝑝𝐴 − 𝑝𝐵 to iteration

simplex on Minkowski difference

D

Simplex Set: {C, D}

E

Simplex Set: {C, D, E}

GJK Algorithm – Walkthrough (Overlapped Case) (3/3)

Modern Game Engine - Theory and Practice

• Edges can separate two convex polygons due to convexity

Separating axis

Separating Axis Theorem (SAT) - Convexity

Modern Game Engine - Theory and Practice

• An edges failed to separate the polygons is not sufficient for overlapping

• All edges must be checked until a separating axis is found

Separating Axis Theorem (SAT) – Necessity for overlapping

Modern Game Engine - Theory and Practice

𝑑 = 𝑛 ∙ 𝑠 − 𝑝

𝒅 ≤ 𝟎

 𝑠

𝑛

 𝑝

d

𝒅 > 𝟎

𝑛

 𝑠

 𝑝
d

Penetration depth is 𝑑

Separating Axis Theorem (SAT) - Separating Criteria

Modern Game Engine - Theory and Practice

• Check edges from A and vertices from B

• Check vertices from A and edges from B

All edges from B failed

A

B

A

B

A

B

Separating Axis Theorem (SAT) – 2D Case (1/2)

Modern Game Engine - Theory and Practice

Separating Axis Theorem (SAT) – 2D Case (2/2)

Modern Game Engine - Theory and Practice

• Check edges from A and vertices from B

• Check vertices from A and edges from B

Optimization

• Cache the last separating axis

Separating Axis Theorem (SAT) – Optimization for 2D Case

Modern Game Engine - Theory and Practice

A
B

• Check faces from A and vertices from B

• Separating axis: face normals of A

• Check vertices from A and faces from B

• Separating axis: face normals of B

• Check edges from A and edges from B

• Separating axis: cross product of two edges

Separating Axis Theorem (SAT) – 3D Case

Modern Game Engine - Theory and Practice

Collision Resolution

Modern Game Engine - Theory and Practice

• We have determined collisions precisely

• We have obtained collision information

• Next, let’s deal with collision resolution

Collision Resolution

Modern Game Engine - Theory and Practice

• Three approaches

• Applying Penalty Force

• Solving Velocity Constraints

• Solving Position Constraints (will be covered in the next lecture)

Approaches

Modern Game Engine - Theory and Practice

• Rarely used in games

• Large forces and small time steps are

needed to make colliding actors look rigid

Applying Penalty Force

Modern Game Engine - Theory and Practice

• Modelling constraints based on Lagrangian

mechanics

• Collision constraints

• Non-penetration

• Restitution

• Friction

• Iterative solver

Joseph-Louis Lagrange

(1736 - 1813)

Solving Constraints (1/2)

Modern Game Engine - Theory and Practice

Physics Solver

𝐯𝑜𝑙𝑑

𝐱𝑜𝑙𝑑

𝐯𝑛𝑒𝑤

𝐱𝑛𝑒𝑤

Constraint

Apply

Forces

Apply

Velocity

𝐯𝑛𝑒𝑤𝐯𝑜𝑙𝑑

𝐱𝑜𝑙𝑑

𝐯𝑛𝑒𝑤

𝐱𝑛𝑒𝑤

Constraint

Apply

Forces

Apply

Velocity

Rigid body

Velocity
Apply

Impulses

rigid body Impulse

Constraint

Velocity

Constraint

Impulse

Updated

Velocity

Solving constraints (2/2)

Modern Game Engine - Theory and Practice

• Sequential impulses

• Semi-implicit integration

• Non-linear Gauss-Seidel Method

𝑃𝑐1 𝑃𝑐2

𝑃𝑐1 𝑃𝑐2

𝑃𝑐1 𝑃𝑐2

• Fast, stable for most cases

• Commonly used in most physics engines

Characteristics:

Approaches:

Solving Velocity Constraints

Modern Game Engine - Theory and Practice

Scene Query

Modern Game Engine - Theory and Practice

• Intersect a user-defined ray with the whole scene

• Point, direction, distance and query mode can be defined

Raycast (1/3)

Modern Game Engine - Theory and Practice

Raycast (2/3)

Modern Game Engine - Theory and Practice

C
B

A

• Mutiple hits

• Closest hit

• Any hit

looks for all blocking hits, picks the one with the minimum distance

any hit encountered will do

looks for all blocking hits

? ? ?

Raycast (3/3)

Modern Game Engine - Theory and Practice

• Geometrically similar to raycast

• Shape and pose can be defined

• Box, sphere, capsule and convex

Sweep (1/2)

Modern Game Engine - Theory and Practice

Sweep (2/2)

Modern Game Engine - Theory and Practice

• Search a region enclosed by a

specified shape for any overlapping

objects in the scene

• Box, sphere, capsule and convex

B
A

Overlap (1/2)

Modern Game Engine - Theory and Practice

Overlap (2/2)

Modern Game Engine - Theory and Practice

• Actor has a collision group property

Player : Pawn

Obstacle : Static

Movable box : Dynamic

Trigger box : Trigger

…

• Scene query can filter collision groups

Player moving query collision group:

(Pawn, Static, Dynamic)

Trigger query collision group:

(Pawn)

…

Collision Group

Modern Game Engine - Theory and Practice

Efficiency, Accuracy,
and Determinism

Modern Game Engine - Theory and Practice

Island 1

Island 2

Island 3

Simulation Optimization – Island

Modern Game Engine - Theory and Practice

• Simulating and solving all rigid bodies uses lots of resources

• Introducing sleeping

• A rigid body does not

move for a period of time

• Until some external force

acts on it

z
z

z

z
z

z
z

Simulation Optimization – Sleeping

Modern Game Engine - Theory and Practice

120

Continuous Collision Detection (1/4)

Modern Game Engine - Theory and Practice

• Thin obstacle vs. fast moving actors

• Tunneling

 𝑣

𝑡 𝑡 + Δ𝑡

 𝑣

Continuous Collision Detection (2/4)

Modern Game Engine - Theory and Practice

• Solution to tunnelling

Let it be – some thing unremarkable Make the floor thicker – boundary air wall

Continuous Collision Detection (3/4)

Modern Game Engine - Theory and Practice

• Time-of-Impact (TOI) – Conservative advancement

𝜔𝐵

 𝑣𝐵

𝜔𝐴

 𝑣𝐴
𝑑

Continuous Collision Detection (4/4)

• Estimate a “safe” time substep A and B won’t

collide

• Advance A and B by the “safe” substep

• Repeat until the distance is below a threshold

Modern Game Engine - Theory and Practice

• Multiplayer game with gameplay-

impacting physics

• Small error causes butterfly effect

• Synchronizing states requires

bandwidth

• Synchronizing inputs requires

deterministic simulations

Deterministic Simulation (1/4)

Modern Game Engine - Theory and Practice

Non-deterministic Simulation

Deterministic Simulation (2/4)

Modern Game Engine - Theory and Practice

Same old states + same inputs = same new states

Deterministic Simulation (3/4)

Requirements

• Fixed step of physics simulation

• Deterministic simulation solving sequence

• Float point consistency

Modern Game Engine - Theory and Practice

Deterministic Simulation

Deterministic Simulation (4/4)

Modern Game Engine - Theory and Practice

Physics is Not Easy

Modern Game Engine - Theory and Practice

Lecture 10 Contributor

- 一将

- 灰灰

- 新之助

- BOOK

- Wood

- 爵爷

- 乐酱

- 大喷

- Qiuu

- Adam

- Olorin

- 喵小君

- 呆呆兽

- 蒙蒙

- 人工非智能

- Hoya

- 达拉崩吧

- 蓑笠翁

- 晨晨

- Kun

Q&A

Modern Game Engine - Theory and Practice

Modern Game Engine – Theory and Practice

Follow us for
further information

Enjoy ;)

Coding

Course Wechat

