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Blue noise distribution: random & uniform
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Blue noise sampling application

Stippling
[Balzer et al. 2009]

Remeshing
[Jiang et al. 2015]

Important sampling
[Ostromoukhov et al. 2007]

Object displacement 
[Wei et al. 2010]

Ray tracing
[Cook 1984]

Point-based Modeling
[Ö ztireli et al. 2010]



Previous work

 Stochastic sampling  
Dart throwing method and its variations [Cook 86, Mitchell 87, Jones 06, 

White et al. 07, Ebeida et al. 12,  Yuksel 15]

 Title-based sampling [Kopf 06, Wachte 14]

 Optimal sampling
Lloyd relaxation method [Lloyd 82]

Kernel density model [Fattal 11, Jiang et al. 15]



Lloyd relaxation method
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Improving controllability of point distribution quality !



Limitations of previous Lloyd relaxation method

 Uncontrollability of the solution 

Less regular

More regular

𝑬

Optimal Solution

Sub-optimal Solution



 Conflicts on multi-class sampling

Initial points Red points Blue points Red and blue points

Limitations of previous Lloyd relaxation method



 Conflicts on multi-class sampling
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Core idea

 Relaxing  the optimal transport problem

Controlling spatial regularity of the point distribution

Relaxing the conflict of multi-class sampling



General optimal transport problem

𝜚 𝑥Density function Points {𝑥𝑖}
Sampling

𝜈 𝑈 =  
𝑈

𝜚 𝑥 𝑑𝑥, 𝑈 ⊆ Ω 𝜇 =  
𝑖
𝜌𝑖𝛿𝑥𝑖 𝑠. 𝑡. 

𝑖
𝜌𝑖 = 1, 𝛿𝑥𝑖 =  

1 𝑥𝑖 ∈ Ω
0 others

Probability measure Discrete Probability measure

𝜇 = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝜇

𝑊𝑝
𝑝
𝜇, 𝜈 =𝑎𝑟𝑔 𝑚𝑖𝑛

𝜇
𝑖𝑛𝑓
𝜋

 
𝑋×𝛺

𝑑 𝑥𝑖 , 𝑦
𝑝 𝑑𝜋 𝑥𝑖 , 𝑦

𝑠. 𝑡.  
𝛺

𝜋 𝑥𝑖 , 𝑦 = 𝜌𝑖 , 

𝑖

 
𝑈⊆𝑄

𝜋 𝑥𝑖 , 𝑦 𝑑𝑦 =𝜈 𝑈 , 𝜋 𝑥𝑖 , 𝑦 ≥ 0

Constrained
Wasserstein barycenter



𝜋(𝑥𝑖 ,∙) 𝜋(𝑥𝑗 ,∙)𝜋 𝑥𝑖 , 𝑦 ∙ 𝜋 𝑥𝑗 , 𝑦 = 0

𝑥𝑖 𝑥𝑗

Transport Plan on 1D

General optimal transport problem

Property

𝜇 = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝜇

𝑊𝑝
𝑝
𝜇, 𝜈 =𝑎𝑟𝑔 𝑚𝑖𝑛

𝜇
𝑖𝑛𝑓
𝜋

 
𝑋×𝛺

𝑑 𝑥𝑖 , 𝑦
𝑝 𝑑𝜋 𝑥𝑖 , 𝑦

𝑠. 𝑡.  𝛺 𝜋 𝑥𝑖 , 𝑦 = 𝜌𝑖 ,  𝑖  𝑈⊆𝑄
𝜋 𝑥𝑖 , 𝑦 𝑑𝑦 =𝜈 𝑈 , 𝜋 𝑥𝑖 , 𝑦 ≥ 0

Constrained Wasserstein barycenter Wasserstein distanceDistance function

Mass conservation law

Transport plan



Relaxed optimal transport problem
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Core idea
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Single class samplings on different 𝜺

𝜖 =  𝟏 𝟒𝟎 𝜖 =  𝟏 𝟐𝟖𝟎 𝜖 =𝟎⋯

⋯



𝝐 =1/40 𝝐 =1/80 𝝐 =1/120 𝝐 =1/160 𝝐 =1/200 𝝐 =1/240 𝝐 =1/280 𝝐 =1/320

Single class samplings on different 𝜺

Ω6 0.367 0.347 0.397 0.415 0.557 0.537 0.572 0.595
𝛿𝑎𝑣𝑔 0.508 0.755 0.846 0.856 0.894 0.893 0.894 0.894



Multi-class sampling 

 𝜇 = 𝑎𝑟𝑔 𝑚𝑖𝑛
 𝜇
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Discrete representation 

𝜇 =  
𝑖
𝜌𝑖𝛿𝑥𝑖 𝑠. 𝑡. 
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Discrete probability density Position
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𝑖=1

𝐾

𝜆𝑖 < 𝐃𝑖 , ∏𝑖 >
𝐃𝑖: the distance matrix 

∏𝑖: the transport plan matrix 



A  loop iteration algorithm on GPU

 An iterative Bregman projection for ∏𝑖

𝑊𝑝
𝑝
𝐷,Π = 𝑎𝑟𝑔min

Π
< 𝐷,Π > + 𝜀𝐻(Π)

[Cuturi 2013]

 A Newton iterative method for 𝐗

𝐗 = 1 − θ 𝐗 + θ𝐘𝚷T𝐝𝐢𝐚𝐠 ρ−1 , 0 < θ < 1



Comparison on single class sampling
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Evaluation of sampling ratio 
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Two-class sampling



The comparison for two-class sampling

Dart throwing
[Wei 2010]

Ours
𝝀𝟏,𝟐,𝟑 = (𝟏, 𝟏, 𝟔)/𝟖

Ours
𝝀𝟏,𝟐,𝟑 = (𝟏, 𝟏, 𝟐)/𝟒

Ours
𝝀𝟏,𝟐,𝟑 = (𝟏, 𝟏, 𝟏)/𝟑
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Adaptive two-class sampling

Dart throwing [Wei 2010] Ours



The comparison for three-class sampling

Dart throwing [Wei 2010]



The comparison for three-class sampling

SPH [Jiang et al. 2015]



The comparison for three-class sampling

Ours



Seven-class sampling



Sampling on a point set surface



Running time in log scale for single sampling



Running time and memory usage for multi-class sampling



Applications: visual abstraction



Applications: color stippling



Applications: object placement



Surface construction of noisy point clouds



Conclusions

Multi-class blue noise sampling as the constrained 
Wasserstein barycenter

 Relaxing optimal transport problem via the entropic 
regularization term



Future work

 The synthesis of point distributions

The efficiency for large datasets
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Thank you!

Code :
https://github.com/Hongxing-CQUPT/SamplingCUDA


