Learning to Control Complex Human Motions Using Reinforcement Learning

Libin Liu http://libliu.info

DeepMotion Inc http://deepmotion.com

Physics-based Character Animation

Motion Controller

Control Signal

Physics Engine

Character Animation

[Gang Beasts]

[Totally Accurate Battle Simulator]

Designing Controllers for Locomotion

Hand-crafted control policy

Simulating abstract model SIMBICON, IPM, ZMP...

Optimization/policy search

Reinforcement learning Actor-critic

[Hodgins et al. 1995]

[Coros et al. 2010]

[Mordatch et al. 2010]

SIMBICON [Yin et al. 2007]

[Tan et al. 2014]

[Peng et al. 2017]

Designing Controllers for Complex Motions

Designing controllers for complex motions

Tracking Control for Complex Human Motion

Reinforcement Learning

Outline

Construct open-loop control
SAMCON (Sample-based Motion Control)

Guided learning of linear feedback policies

Learning to schedule control fragment using deep Q-learning

Tracking Control

• PD servo

$$\tau = k_p (\tilde{\theta} - \theta) - k_d \dot{\theta}$$

Mocap Clips as Tracking Target

Correction with Sampling

SAMCON

- SAmpling-based Motion CONtrol [Liu et al. 2010, 2015]
 - Motion Clip → Open-loop control trajectory

Particle filtering / Sequential Monte Carlo

SAMCON

Sampling & Simulation

Resampling

SAMCON Iterations

SAMCON Iterations

Constructed Open-loop Control Trajectory

Control Reconstruction

Linear Policy

For complex motions

Control Fragment

- A short control unit:
 - $\delta t \approx 0.1$ seconds long
 - Open-loop control segment \widehat{m}
 - Linear Feedback policy π

Controller

A chain of control fragments

Example: Cyclical Motion

 \mathcal{C}_k : $\{\widehat{m}_k, \delta t, \pi_k\}$

Example: Cyclical Motion

Policy Update

Policy Update

Regression

Guided Learning Iterations

Guided Learning Iterations

Control Graph

• A graph whose nodes are control fragments

Control Graph

- A graph whose nodes are control fragments
- Converted from a motion graph

SlowRun

Problem of Fixed Time-Indexed Tracking

Scheduling

Scheduling

Deep Q-Learning

Learn to perform good actions

Raw image input

Deep convolutional network

[Mnih et al. 2015, DQN]

Training

Pipeline:

Exploration / Exploitation

Simulation

Reward

Replay Buffer

Batch SGD

Reward Function

$$R = E_{\text{tracking}} + E_{\text{preference}} + E_{\text{feedback}} + E_{\text{task}} + R_0$$

Importance of the Reference Sequence

Tracking penalty term

In-sequence action

Out-of-sequence action

Tracking exploration strategy

with probability ε_r select a random action with probability ε_o select an in-sequence action

Bongo Board Balancing

Effect of Feedback Policy

Open-loop Control Fragments

Next Action 7 0 1 2 3 4 5 6 7 8 9 10 Previous Action

Feedback-augmented Fragments

Discover New Transitions

Bongo Boarding Input

Running

Tripping

Skateboarding

Skateboarding

Walking On A Ball

Ballwalker Input

Push-Recovery

Conclusion

Libin Liu, Michiel Van De Panne, and Kangkang Yin. 2016. Guided Learning of Control Graphs for Physics-Based Characters. *ACM Trans. Graph.* 35, 3, Article 29 (May 2016), 14 pages.

Libin Liu and Jessica Hodgins. 2017. Learning to Schedule Control Fragments for Physics-Based Characters Using Deep Q-Learning. *ACM Trans. Graph.* 36, 3, Article 29 (June 2017), 14 pages.

Future Work

Statistical/generative model

Control with raw simulation state and terrain information

Active human-object interaction basketball, soccer dancing, boxing, martial arts

[Holden et al. 2017]

[Peng et al. 2017, DeepLoco]

[Heess et al. 2017]

Questions?

Libin Liu
http://libliu.info

DeepMotion Inc http://deepmotion.com

