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Shape Correspondence

J Matching man-made shapes is a fundamental task for structure analysis:
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Shape Correspondence

e Part-level correspondence vs. Point-level correspondence

[ST "[e 18 wiysey|y]

Part-level Point-level
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Challenge

* Large variability in geometry & structure

e Inconsistent segmentation vs. fine grained matching
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Previous Works

e Most previous correspondence methods are based on:

— Part similarity

— Distortion
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[Kleiman et al. 15] [Fish et al. 16]
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Previous Works

* GeoTopo, our first deformation-driven paper

e Handle topology variation

e Best matching = minimal structure distortion
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e Handcrafted deformation energy ®






Data-driven Part Correspondence?

e How to define a good energy measure?

Handcrafted Energy Data-driven Energy
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Data-driven Part Correspondence?

Label it ourselves

Pairwise labeling gives workload explosion

Too coarse to help fine grained matching

Existing Dataset







Key Observation

* Still use deformation-driven correspondence approach
* Data-driven deformation energy
* Turn correspondence into a recognition problem

— Training data: use ShapeNet directly

— No part label needed



Key Ildea

e Distortion is HARD to measure

e PBest matching — Minimal structure distortion

Not Obvious
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Key Idea

e Distortion is HARD to measure but recognition is not
e RBest matching — Mi:rsitu_ndhla‘si'bketure distortion

Not Qbyvi
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Main Contributions

* Key contribution:

— Data-driven plausibility measure

—

Coarse to fine hierarchical search strategy -
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Correspondence Search

e (Coarse to fine correspondence search strategy:

— Handle inconsistent segmentation

— More efficient
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Correspondence Search

* The correspondence search is based on binary graph partition
— Each shape is represented as a graph G
— Binary graph partition = Splitting G into two vertex-disjoint subgraphs
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Correspondence Search

* The correspondence search is based on binary graph partition
— Each shape is represented as a graph G
— Binary graph partition = Splitting G into two vertex-disjoint subgraphs
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Correspondence Search

¢ Three termination conditions:

— Only one-to-one or one-to-many correspondences
— The plausibility of all child nodes is below a threshold

— The plausibility of all child nodes are equal within a tolerance margin
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Correspondence Search

e Replace matched parts. then propagate:
P parts, propag
— Connectivity recovery

— Symmetry recovery

After Replacement Connectivity Recovery

Symmetry Recovery
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Data-driven Plausibility Measure

e What to do:
— Training data preparation
— Projected image approach

— Middle-level elements, multi-view feature encoding
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Training Data

* We have a lot of positive examples already

e Anin-between shape that is generated using incorrect correspondences should

either:
— lack some relevant sub-structures

— have a messy global structure
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Messy global structure

Missing critical parts
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Projected Image Approach

e An effective way to compare 3D shapes

e Jtis enough to use canonical views as references

Positive Removal

Random Swap
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Plausibility Evaluation

* We need a feature which can not be too global or too local

* Middle-level elements(sub structure) based feature
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Plausibility Evaluation

* Good middle-level elements:

— neither too unique, to capture relevant structures of 3D shapes

— nor too common, aiming to remain flexible

* Most representative ones

Term Frequency(TF)
Document Frequency(DF)

Samples K-means clustering Self-tuning spectral clustering IF-IDF sorting
More than 50k Y4 samples Less than 500 Top 60
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Plausibility Evaluation

e We extend the well-known convolution operation to perform feature

encoding of a given depth image

convolution
‘i. . . Response Maps
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Plausibility Evaluation

We encode the 2D information into1D by defining 5 slices of accumulation

histograms along both the horizontal and vertical directions

A three-class SVM is trained to predict the plausibility
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Results
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Results
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Results
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Comparison with GeoTopo

 [GeoTopo]| Deformation-Driven Topology-Varying 3D
Shape Correspondence

 Works on pairs

* State-of-art

* Topology variation

* Human defined energy
 Bottom-up search
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Evaluation

* Comparison with Geotopo

G eoTopo

CaleBory ["Precision | Recall | Tyecision | Recall [ f
Chair | 09| 067 083] 083 o2

Table | 063 | 061 || 081| 086 P2
Bed | 060 0e2|| 078| 0813
“Airplane | 060|068 || 080 | 08525
Velocipedes | 047|044 || 043 | 049 [Jo35
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Limitation

* Wrong correspondences may still generate plausible shapes

°* May fail on shapes with many small parts

Shape with many small parts

Wrong match but plausible in-between

30



Future Works

. Speeding up data-driven Correspondence evaluation
e Partial matching
. Extending to the Co-analysis setting

. Applying deep learning approach
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