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Event Sequences
Use Case: Human Activities Analysis

v

breakfast start work

v

3 Research and Technology Center North America | CR/RTC-HMI1 | 8/25/2017 @ BOSCH




Event Sequences
Use Case: Website Click Streams Analysis
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Event Sequences
Use Case: Car Faults Analysis

» Car modules like ECUs
/ sensors emits fault signals like

DTCs during  08-21 12:30 GPS
operation. inoperative

» Fault data is archived for most car brands.

08-22 12:30

08-20 10:00 4294

Car battery low Short circuit
(A) (Bl—(C)

Repair / maintenance
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Event Sequences
Use Case: Car Faults Analysis

» What are the typical development paths
of faults? (Identify sequential patterns)

-----------------------------

= : ,
=3 y —(D—{A) (B) C-— » Do cars matched to the same pattern

come from the same country? (correlation
analysis)

3@’_
- = ) Insights support predictive
diagnostics (i.e. identify faults likely to

t happen in the future).

Better driving experience & warranty cost
saving.
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Visualize Event Sequences
Plotting Raw Data
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259 sequences & 2500 events in total
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Visualizing Event Sequences
Aggregation and Interaction

EventFlow Outflow
Monroe et. al. 2013 Wongsuphasawat and Gotz, 2015

@ Provide succinct overview of sequences

@ Not robust to noisy data
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Visualizing Event Sequences
Visual Summary through Sequential Pattern Mining / Clustering

'l : - 5 » Sequence Clustering
E r—';‘. @ L } () Robust to noisy data

@ Interpretation of clusters: How to
characterize each sequence cluster

Unsupervised clickstream Visual cluster exploration,
clustering, Wang et. al. 2016 Wei et. al. 2012

| = - > . e e P Sequential Pattern Mining
I grem— 1 @ Interpretable algorithmic parameters
-— | and results
e B R (R ~ R S fon
@ Large number of patterns: Need to
Frequence, Perer Peekquence, Kwon Patterns&Sequences, be pruned based on heuristics
and Wang, 2014 et. al. 2016 ~ —~~ . .
-(" )- We need to have an interpretable, noise tolerant,qnts
7 ~ . .
=  principled approach for event sequence
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OUR APPROACH




Our Approach — Sequence Synopsis
Overview

» Two-part representation of event sequences
as lossless compression of the data

» Optimal pattern set selection for visual
summary based on the Minimum Description
Length (MDL) principle
» Optimization algorithm ]
» Speedup with locality sensitive hashing
B—C—
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Our Approach — Sequence Synopsis
Two-Part Representation of Event Sequences

Representative pattern
summarizes multiple sequences.
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Our Approach — Sequence Synopsis
Two-Part Representation of Event Sequences

—
Corrections - event insertions
(edits) recover the original
sequences from the pattern.
N\

Representative pattern

B) summarizes multiple sequences.
B

©

_“@’_ Use sequential patterns for visual summary.

7 ~

= Model information loss with the required edits
(corrections). @ BOSCH
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Our Approach — Sequence Synopsis
Two-Part Representation of Event Sequences

Event deletion is another possible
N\ type of edit.

Representative pattern
summarizes multiple sequences.

=)

(B)

©

_“@’_ Different types of edits allow different variations
AN from the pattern. Enable noise tolerant &
< robust pattern matching.
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Our Approach — Sequence Synopsis
Two-Part Representation of Event Sequences

Event Sequences

Patterns Edits (Corrections)
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What can be considered as a good set of patterns
to summarize a collection of event sequences?
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Our Approach — Sequence Synopsis
The Minimum Description Length (MDL) Principle

» The best model (or hypothesis) of a data set should minimize its total description
length:
L =L(M)+ L(D|IM)

Model description length  Data description length
with the help of the model

» Widely used information-theoretic criteria for
model selection

» Introduced by Jorma Rissanen in 1978
» Formalizes “Occam’s Razor”
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Our Approach — Sequence Synopsis
Description Length of Event Sequences

L=LM)+LDIM) —

LCP, ) — Zpeplen(l’) + a>ocslledics(s, £SO + allell
# min edits (corrections) @
e ‘ sum(lengths of patterns) 7
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XL/ Trade-off between reducing visual complexity & minimizing information loss.

=
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Our Approach — Sequence Synopsis
Optimize Description Length for the Best Set of Patterns

» Basic Idea: iteratively find & merge two groups of sequences with maximum description
length reduction

» How to calculate description length reduction?
» Find representative sequence for the merged group

» Calculate the minimum number of edits (insertion, deletion, swapping event positions)

needed to transform the representative sequence to the individual sequence in the
merged group

— Assuming insertion & deletion are allowed. Longest common subsequence (LCS) algorithm
can be applied to calculate min #edits

» Sum up the description length
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Our Approach — Sequence Synopsis
Optimize Description Length for Best Set of Patterns

» Basic Idea: iteratively find & merge two groups of sequences with maximum description
length reduction
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Our Approach — Sequence Synopsis
Optimize Description Length for Best Set of Patterns

» Basic Idea: iteratively find & merge two groups of sequences with maximum description
length reduction

Calculate description length reduction
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Try to merge each pair of sequences/patterns
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Our Approach — Sequence Synopsis
Optimize Description Length for Best Set of Patterns

» Basic Idea: iteratively find & merge two groups of sequences with maximum description
length reduction

Calculate description length reduction
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Try to merge each pair of sequences/patterns
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Our Approach — Sequence Synopsis
Optimize Description Length for Best Set of Patterns

» Basic Idea: iteratively find & merge two groups of sequences with maximum description
length reduction
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Merge the pair with maximum description
length reduction
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Our Approach — Sequence Synopsis
Optimize Description Length for Best Set of Patterns

» Basic Idea: iteratively find & merge two groups of sequences with maximum description

length reduction
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Need to perform pairwise comparison at each iteration
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Our Approach — Sequence Synopsis
Algorithm Speedup through Locality Sensitive Hashing (LSH)

» Bottleneck of the approach: find best pair of event sequence groups to merge
» Locality sensitive hashing: algorithm for fast approximate neighbor search
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Our Approach — Sequence Synopsis
Algorithm Speedup through Locality Sensitive Hashing (LSH)

» Bottleneck of the approach: find best pair of event sequence groups to merge
» Locality sensitive hashing: algorithm for fast approximate neighbor search

Simplified similarity measure with set relation
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Our Approach — Sequence Synopsis
Algorithm Speedup through Locality Sensitive Hashing (LSH)

» Bottleneck of the approach: find best pair of event sequence groups to merge
» Locality sensitive hashing: algorithm for fast approximate neighbor search
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Our Approach — Sequence Synopsis
Algorithm Speedup through Locality Sensitive Hashing (LSH)

» Bottleneck of the approach: find best pair of event sequence groups to merge
» Locality sensitive hashing: algorithm for fast approximate neighbor search

20x ~ 50x speed gain
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Our Approach — Sequence Synopsis
Algorithm Speedup through Locality Sensitive Hashing (LSH)

» Bottleneck of the approach: find best pair of event sequence groups to merge
» Locality sensitive hashing: algorithm for fast approximate neighbor search

MinDL+LSH
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Our Approach — Sequence Synopsis
Advantages

> Gi :
Slmultaneou§ event sequence clustering and N——
pattern extraction

» Soft constraints on pattern matching,
therefore robust to noisy data

» Generalizability: possibility to include
different sequence editing operations (e.g.
event insertion, deletion, swapping positions)
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System
Visual Design

Visual Design
Original Data Patterns Corrections 8

#Additional events
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System
Architecture

Interactive Level-of-detail
filtering exploration

x x \
S — V- wo— lm

—— Computin Interactive
Event sequences Filtering data S b
MDL representation visualization

\ |

Query raw data & attribute info
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System
Supportive Views, Ul, Case Study — Vehicle Fault Analysis
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System
Case Study — Application Log Analysis
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System
Case Study — Application Log Analysis

Binding data
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» D. Fisher. Agavue event data =~ —
sample
> ~2000 user sessions + TS ‘
» Interaction log of using a —
data visualization application 1z
& Data ‘I'
X axis: | Order | Time
:::?3 0s0-0-dop v @
783 290@ Oph@ (=]
o7 000 oqQop
164 @+e0Q0pP ©
490 000 oqop 0
495 o0eoqop o]
941 o0eoqop ® O
138 oeeoqop
686 EMBOOCSD @]
% Ded ® -
25 Research and Technology Center North America | CR/RTC1.4-NA | 8/25/2017 @ BOSCH



EVALUATION &
SUMMARY




Evaluation & Summary
Comparative Experiment

= Sequence Clusters
Sortby Size Similarity Zoom 4 = QO Update

» Vehicle Fault Sequence
» 259 cars & 2500 events
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EventFlow Our method
Monroe et. al. 2013
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Evaluation & Summary
Contributions

» A new application domain of event sequence visualization = s cuses 0o

Sortby Size Similarity Zoom 4 = O Updats
» A generic two-part representation of event sequences
that:

» Quantifies visual complexity & information loss in visual
summaries

A0

» Combined with the MDL principle, defines an optimal set of
patterns for summary

| 1

Description misssiy message

» An efficient algorithm to optimize visual summary using LSH

» A visual analytics system that supports interactive analysis
of real-world event sequences from different application
domains Al
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Evaluation & Summary
Future Work

» Revise model representation to discover multiple patterns

in a single sequence Sty e Sy o .9
» Towards quantifiable visual designs by applying the _ ;.:m e

MDL principle to different types of data: graph/networks, o s e e . e e

time series ... \ 4 . WM’
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