SCAF: Simplicial Complex Augmentation Framework for Bijective Maps

Zhongshi Jiang, New York University Scott Schaefer, Texas A&M University Daniele Panozzo, New York University

Locally Injective Maps

Results

Bijective Maps

Comparisons

Locally Injective Maps

Results

Bijective Maps

Comparisons

Bijective Condition: Local

$$det(\Delta) > 0 \quad \forall \Delta \in \mathcal{M}$$

Symmetric Dirichlet Energy

Symmetric Dirichlet Energy

Locally Injective Mappings

[CM: Shtengel et al 2017]

[LIM: Schueller et al 2013]

[SLIM: Rabinovich et al 2017]

[AKVP: Claci et al 2016]

[AQP: Kovalsky et al 2016]

Rotation Invariance Energies

[Rabinovich et al 2017]

Rotation Invariance Energies

[Rabinovich et al 2017]

Rotation Invariance Energies

[Rabinovich et al 2017]

$$X_k = \operatorname{argmin}_{\mathbf{x}} \mathfrak{P}_{[X_{k-1}]}(\mathbf{x})$$

Rotation Invariance Energies

[Rabinovich et al 2017]

Locally Injective Maps

Results

Bijective Maps

Comparisons

Bijective Condition: Global

$$\Delta_1 \cap \Delta_2 = \emptyset$$
 $\forall (\Delta_1, \Delta_2) \in \mathcal{M} \times \mathcal{M}$

Bijective Maps: Smith and Schaefer 2015

- Collision Detection on Boundary
- Local Support Energy

Scaffold: Natural Collision Detector

Scaffold: Natural Collision Detector

Scaffold Pipelineng et al

Scaffold Pipelineng et al

[Tutte 1963]

Scaffold Pipelineng et al

[Tutte 1963]

Build Scaffold

Scaffold Pipeling et al

- Tutte Embeddingutte 1963]
- Build Scaffold
- Valid Interior Deformation

More Progressiv Güller et al 2015]

More Progressiv Büller et al 2015]

More Progressiv@üller et al 2015]

Start from Identity

Deform Arbitrarily

More Progressiv@üller et al

- Deform Arbitrarily
- Bounce Back

More Progressiv@üller et al

- Deform Arbitrarily
- Bounce Back

More Progressiv@üller et al

- Deform Arbitrarily
- Bounce Back

Scaffold

Scaffold Helps

Scaffold Helps

SCAF Helps

SCAF: Simplicial Complex Augmentation Framework for Bijective Maps

- Previous
 - Local Knowledge
 - Collision Detection

SCAF: Simplicial Complex Augmentation Framework for Bijective Maps

- Scaffold Optimization
 - Global Knowledge
 - Collision Resolution

- Scaffold Optimization
 - Global Knowledge
 - Collision Resolution

- Scaffold Optimization
 - Global Knowledge
 - Collision Resolution

- Scaffold Optimization
 - Global Knowledge
 - Collision Resolution

- Scaffold Optimization
 - Global Knowledge
 - Collision Resolution

- Scaffold Optimization
 - Global Knowledge
 - Collision Resolution

- Scaffold Optimization
 - Global Knowledge
 - Collision Resolution

$$E_{\mathcal{M}}$$

- Scaffold Optimization
 - Global Knowledge
 - Collision Resolution

$$E = E_{\mathcal{M}} + E_{\mathcal{S}}$$

- Scaffold Optimization
 - Global Knowledge
 - Collision Resolution

$$E_{\mathcal{M}}(X)$$
 coordinates

$$E_{\mathcal{M}}(X)$$
 coordinates

$$E_{\mathcal{M}}(X) + E_{\mathcal{S}^*}(X)$$
 coordinates

$$X^* = \operatorname{argmin}_X E_{\mathcal{M}}(X) + E_{\mathcal{S}^*}(X)$$

$$\min_{X_k} E(X_k) = E_{\mathcal{M}}(X_k) + E_{\mathcal{S}_{k-1}}(X_k) \text{ from } X_{k-1}$$

$$E = E_{\mathcal{M}} + E_{\mathcal{S}}$$

[Rabinovich et al 2017]
$$\min_{X_k} E(X_k) = E_{\mathcal{M}}(X_k) + E_{\mathcal{S}_{k-1}}(X_k) \text{ from } X_{k-1}$$

$$E = E_{\mathcal{M}} + E_{\mathcal{S}}$$

[Rabinovich et al 2017]
$$\min_{X_k} E(X_k) = E_{\mathcal{M}}(X_k) + E_{\mathcal{S}_{k-1}}(X_k) \text{ from } X_{k-1}$$

$$E = E_{\mathcal{M}} + E_{\mathcal{S}}$$

[Rabinovich et al 2017]
$$\min_{X_k} E(X_k) = E_{\mathcal{M}}(X_k) + E_{\mathcal{S}_{k-1}}(X_k) \text{ from } X_{k-1}$$

$$E = E_{\mathcal{M}} + E_{\mathcal{S}}$$

[Rabinovich et al 2017]
$$\min_{X_k} E(X_k) = E_{\mathcal{M}}(X_k) + E_{\mathcal{S}_{k-1}}(X_k) \text{ from } X_{k-1}$$

$$S_k = \text{Update}(X_k) \quad \text{from } S_{k-1}$$

$$E = E_{\mathcal{M}} + E_{\mathcal{S}}$$

- Local Update
 - Edge Flip [Zhang et al Müster et al 2015]

$$S_k = \text{Update}(X_k) \quad \text{from } S_{k-1}$$

- Local Update
 - Edge Flip [Zhang et al Mötjer et al 2015]

$$S_k = \text{Update}(X_k) \quad \text{from } S_{k-1}$$

- Local Update
 - Edge Flip

$$S_k = \text{Update}(X_k) \quad \text{from } S_{k-1}$$

- Direct reconstruct
- Coarse

- Direct reconstruct
- Coarse

- Direct reconstruct
- Coarse

- Direct reconstruct
- Coarse

- Direct reconstruct
- Coarse

- Direct reconstruct
- Coarse

Locally Injective Maps

Results

Bijective Maps

Comparisons

Result

Robustness

- Global Parameterization Dataset [Myles et al 2014]
- 119 meshes cut by [Bommes et al. 2009] [Myles et al. 2014]

Robustness

- Global Parameterization Dataset [Myles et al 2014]
- 119 meshes cut by [Bommes et al. 2009] [Myles et al. 2014]

Simplicial Complex Augmentation Framework for Bijective Maps

Simplicial Complex Augmentation Framework for Bijective Maps

Simplicial Complex Augmentation Framework for Bijective Maps

- Same Formulation
- Different Tessellation
 - TetGen [Si 2015]
 - Local Operations [Klinger 2009]

Volume 1

- Same Formulation
- Different Tessellation
 - TetGen [Si 2015]
 - Local Operations [Klinger 2009]

Volume 1

- Same Formulation
- Different Tessellation
 - TetGen [Si 2015]
 - Local Operations [Klinger 2009]

Locally Injective Maps

Results

Bijective Maps

Comparisons

[Smith and Schaefer 2015]: 2 hour 20 min

80K faces

80K faces

< 40 min

< 40 min Over 5 days!

< 40 min Over 5 days!

Scalability

• Inherited from SLIM [Rabinovich et al. 2017]

Limitations

Local Minimum

- Valid Initialization
 - Easy in 2D
 - Hard in 3D
- Implementation in 3D
 - Less Efficient
 - More Involved

SCAF: Simplicial Complex Augmentation Framework for Bijective Maps

Efficient

Robust

The authors acknowledge funding from the NSF CAREER awards IIS-1652515 and IIS- 1148976, and a gift from Adobe. We would like to thank Michael Rabinovich and Roi Poranne for providing the source code and Lucy models for [Rabinovich et al. 2017], Leonardo Sacht for providing the source code and Leg model for [Sacht et al. 2013], and the anonymous reviewers for their insightful comments and suggestions.

https://github.com/jiangzhongshi/scaffold-map