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Size, shape and topology optimization

xxxxx:, =
¢y

[Bendsge and S|gmund(2004

Stiffness matrix;
K=Y :/ BCBQ = :/ BCB|J|dy (1)
e Qe
e e

Stiffness matrix variation: dx = 0K 7
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Size, shape and topology optimization

[Bendsge and Slgmund(2004)]

Stiffness matrix;
K = E / BCBdQ) = E / BCB|J|dx
e Qe
e e

Size optimization: dx = 6C = 6K with C = hC B
Topology optimization: dx = dC = 6K with C = pC
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Size, shape and topology optimization

xxxxx;m =
K |

[Bendsge and Slgmund(2004

Stiffness matrix:

K = Z/e BCBdQ = Z/Qe BCB|J|dy
e e

Shape optimization: 0x = {0B, 6J} = K
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Topology optimization using shape optimization techniques

N\~

=1

[Wang et al.(2003)Wang, Wang, and Guo]

Stiffness matrix:

K = Z/ BCBdQ = Z/Q BCB|J|dy
e e

Fixed background mesh: dx = éC = /K
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Shape optimization by changing size parameters

L

z

—— -

[WANG et al.(2011)WANG, WANG, ZHU, and ZHANG]

Stiffness matrix;

K = Z/ BCBdQ = Z/Q BCB|J|dy
e e

Shape optimization: dx = {dB, dJ} = {K
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© IGA for shape optimization
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IGA for shape optimization

@ Seamless integration between CAD and CAE
o Direct geometry updating
o Meshing and re-meshing is easy
o Curved features are preserved

@ Enhanced sensitivity analysis
o High order derivatives
e More accurate structural response
e Easily accessible geometry informations such as normal vector,
curvature...
@ Double levels discretization for design and analysis
e e.g., coarse mesh for design & refined mesh for analysis

References: [Cho and Ha(2009)], [Qian(2010)],
[Nagy et al.(2010)Nagy, Abdalla, and Giirdal].
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Outline

© Shape sensitivity analysis methods
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Basic modules in a shape optimization problem

Optimizer:

o Update design variables
o GA, Steepest descent, SQP, MMA, GCMMA, ...

Sensitivity analysis:

e Compute the derivatives of the obj./cons. w.r.t. design variables

o Finite difference, Direct difference, Semi-analytical, adjoint method...

v

Supplementary processing

@ Search direction regularization/normalization

@ Mesh updating
@ Mesh regularization/smoothing

v
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Finite difference and direct differential methods

Optimization problem

Ob;j. \U[u[xl’]] with n design variables: x{, i=1,2,3 j=1,2, -

Finite difference

DV _ V[ + A] - V[x]
Dx/ A ’

by sovling KU = F for n+ 1 times

Direct differential method

DV c
— =WV yU, by solving KU = F once
Dy U Yy g
. D
p=2Y
Dx!

1

v
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Semi-analytical methods

Dv -
Y vyl
o
. DU AF AK
U=—"—=K1! [— — ——U|, by sovling K~ once
Dx/ Ax Ax

Remark: spatial and material design derivatives of strain/stress

€'[u] = (Vu) = V(') = €[u];
é[u] = Vu= (Vu) +V(Vu)v = Vi — (Vu)(Vv) = e[d] — (Vu)(Vv).

UL va

Wang Zhenpei (NUS) Isogeometric Shape Optimization: 2018 £ 3 B 23 H 14 / 45



Adjoint method

Optimization problem statement:

Objetive function W
clu] :=divCVu+f=0 inQ
s.t. ¢ (CVu)n—t=0 onlor KU=F
u—u=0 on

Discrete approach

Discretize the problem first, then derive the formulation:

VU], KU=F

Continuous approach

Derive the formulation first as a continuum, then distretize the formulation
and compute:

V[u|, BVP formulation

v
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Adjoint method — discrete approach

Optimization problem statement:

Objetive function ¥
s.t. KU=F

Augmented formulation

V=v=v+UT(—KU+F)

.

Note that U (KU — F) =0,
V=wyU+UT(—KU- KU+ E)
=(Vy-UTK)U+F-UTKU
Introducing an adjoint problem with U* that satisfies KU* = W  we have
V=F-UTku
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Adjoint method — discrete approach

Example: minimizing structure compliance
min V := FU
s. t. KU = F with F = 0 (Design-independent load)

| N\

Adjoint problem
KU =V y=F
= U*=U (self-adjoint problem)

Shape sensitivity
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Adjoint method — continuous approach

Objective function[Wang and Turteltaub(2015)]:

Y[s] := /Qs Vo [ulx; s]] dQ + /rs Uy [t[x; 5], u[x; s]] dT

BVP constraint:

clu] =divCVu+f=0 inQ

(CVu)n—-t=0 onTl
u—u=20 on [
L
(clu,u*)gs=— | CVu-Vu*dQ+ | f- u"dQ
Qs Qs

+/ i-u*dr+/ t-u*dl =0
s s
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Adjoint method — continuous approach

Material and spatial derivatives

Material /full derivative: h[p;s] := 8—"[p; s]’

Q>|Q>

Spatial /partial derivative: h'[x;s] := 9[x; s]’
Design velocity: v[p;s] := X[p; s] = as X[p; s]}p

() F0)

Initial design Design s
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Adjoint method — continuous approach

Transport relations

Volume q
—/ fdQ = f[dQ+ [ fv-ndl
dS s Qs rs

Boundary

d

- rshdF:/rs (B—nhu.n) A

(N0 30

Initial design Design s
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Adjoint method — continuous approach

Objective function[Wang and Turteltaub(2015)]:

Yls] := /Qs Vo [ulx; s]] d + /rs Uy [t[x; s], u[x; s]] dT

v

BVP constraint:

(clu],u")gs =— [ CVu-Vu"dQ+ f-u*dQ
Qs Qs

+/ i-u*dr+/ t-u*dl =0
I s

Augmented function

U=V + (c[u], u*)gs
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Adjoint method — continuous approach

Derivatives:

d\II

ww o' dQ + wwvn dr + / (Vi - nvp — ykuy) dl
rS

/%uu dr+/ Yoy ull dr+/ ¢%§i’dr+/ o et' dl
e I

%(c[u], u*) = / —(CVu’ -Vu* —CVu-Vu*' +f - u*+Ff- u*') dQ

CVU u*—f-u*)u,,dl'
rS

+/ t ut +t- u*’)dr+/<t’-u*+t-u*’)dr
rs 5

(V(t-u*)nv, —(t- u*) k) dl
rs
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Adjoint method — continuous approach

Derivatives:

Note {c[u], u*’) =0,
.CVY -VurdQ = [, t* - d'dl — [,.CV2u* - ' dQ, we have
fQ F Q

= ®; + ®,, where
b = / (Yoo,u + CVzu*) -u' dQ —|—/ (g — t*) -’ dl
Qs rs

+ / (e + u*) - t'dl

= [ (Yo —CVu-Vu* +F u)v,dl + f' - u*dQ
rS QS

+ V@b.y nv, — Y kvp) + V(- u*) - nv, — (t- u*)/iyn) dr
s

/ (0 — t¥) “’dr+/rs(zpmi+u*).i’dr
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Adjoint method — continuous approach

Adjoint model:

Introducing

CV2u* + f* =0 with f*= Whoy v in Q°;
u* =u* with o* = —y ¢ on [I3;
t'=(CVu)'n=t with t'=4¢,, on Ti

such that

Eventually,

DU DV

—=—=0
Ds Ds 2

v
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Adjoint method — continuous approach

Shape sensitivity:

bv
Ds =
+ /FS ((v¢'y “nvp, —Yykvp) + V(- Uu) - ny, — (t- u*) m/n> dr

(03 :/ (z,[)w — CVu- -Vu* + f-u*)y,,dr+ f' - u*dQ
S QS

+/ (. — t°) - &' dT + (z/;%ﬁu*)-i’dr
rs 3

I—t
2 dx/[s]
_A_E /
V=X= I RT
D\U o3 * | / *
BT = r(¢w—CVu-Vu +f-u)nR'dl + [ f'-u*dQ

+/_5((V¢7-n¢wﬁ)+v(t‘"*)‘"(t‘“*)“)"Rldr
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Adjoint method — continuous approach

Shape sensitivity:

%:d}zz/(¢w—CVu-Vu*+f-u*)z/ndl_+ f' - u*dQ
s QS

+/ ((V¢7-nun—¢7mun)+V(t-u*)-m/,,—(t-u*)kw,,) dr

rs(w%u —t")- o' dr + /rs (wv,i + u*) Hdr

t

Z ,dx’[s]

l

><>°
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Adjoint method — continuous approach

Shape sensitivity:

Dwv

W:/(zpw—<CVu~Vu*—i—l"-u*)n,"\”dl'—l—/ f' - u™dQ

S

+/ ((V@ZJ7 n—yyK)+V(t-u*) n— (t-u*)n)nR’dF
#f ey e [ (o) dar

t
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Adjoint method — continuous approach

Example: minimize structural compliance
ObJ:A\lJ[s] = fr? s dI with 1), :Af ‘u
t =t is design-independent, i.e., t = 0.

| \

BVP constraint:
clu] :=divCVu+f=0 with f=0 inQ°
t=1t+#0 on '}
u=u=0 on [}

Adjoint model = primary model (self-adjoint)

CV2u*+f =0 with f"=1,,=0 in Q;
t* = (CVu*)Tn=1" with ¥ =v¢,,=1 on T3
u* = u* with u*=—1, ;=0 on T%.

v
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Adjoint method — continuous approach

Example: minimizing the structural compliance

Shape sensitivity:

bv _ CVU.Vu*nR’dF+/ (Vb - n— by k)nR! dT
Dx! Is rs

+/S<V(t-u*)-n—(t-u*)ﬁ)nR’dF

-

CVu-Vu*nR'dlr + 2/

rg(V(t-u)-n—(t-u)m)nR'dF

v

s
t

Compared with the discrete approach:
V=-UTkU=-UKU

Which one is easier for you to compute??
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Adjoint method: Question !

Discrete approach vs Continuous approach

For problems with design-dependent
boundary conditions,
which approach is easier ??
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Adjoint method: Question !

Discrete approach vs Continuous approach

For problems with design-dependent
boundary conditions,
which approach is easier ??
The answers can be different for different people.

In general, just choose the one you like.
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Adjoint method — continuous approach

Some additional references about continuous adjoint method:

@ [Dems and Mroz(1984)]: Variational approach by means of adjoint systems
to structural optimization and sensitivity analysis—II: Structure shape
variation, 1JSS, 1984.

[Choi and Kim(2005)]: Structural sensitivity analysis and optimization 1:
Linear systems, 2006.

[Arora(1993)]: An exposition of the material derivative approach for
structural shape sensitivity analysis, CMAME, 1993.

[Tortorelli and Haber(1989)]:First-order design sensitivities for transient
conduction problems by an adjoint method, IJNME, 1989.

[Wang and Turteltaub(2015)]: Isogeometric shape optimization for
quasi-static processes, IJNME, 2015.

[Wang et al.(2017c)Wang, Turteltaub, and Abdalla]: Shape optimization
and optimal control for transient heat conduction problems using an
isogeometric approach, C&S, 2017.
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Outline

@ Scarch directions related issues with NURBS parametrization
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Parameterization-dependency of the search directions

sk 5
b Desienboundary, | b rAToT OO
0 ST 75 T 0 % s 10 15 20
(a) (b)
Example: volume reduction
Volume: Y = [,dQ

Gradient (continuous):
g=n
Gradient (NURBS discretization):

gg:/nR’dr
.
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Parameterization-dependency of the search directions

5 1

(X/)(SH) _ (XI)(S) +ad, = (x’)(s) —ag!,
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Parameterization-dependency of the search directions

MM

94

92

A2 2222222227

AMMAAAAMAAAA

|
T AL LT

WA

90

Volume

88 -

86 -

L Il 1 1 1 1 J
5 10 15 20 25 30 35 40 45 50 55 60
Tteration

84 I ! ! ! I

Parameterization-free approach for FE-based shape optimization
[Le et al.(2011)Le, Bruns, and Tortorelli]
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A simple example about the quadratic norm induced by
discretization

A (squared) L2 norm

*‘
X
Il
X

x

|
h
*

I
N
X

gradient: g
steepest search direction: d

Quadratic norm induced by discretization x = RT X

R is a vector of shape functions, X is a vector of discrete variables x’
f=X"MX, with M=RR'

gradient: g = T = 2Mpx?, G = fx = 2MX
steepest search direction: D, = -M7'G, D, = [d}” dfn o]
' Dy = —G is NOT the steepest search direction !!

v
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Steepest search directions of quadratic and (squared) L?

norms

60X =-M"'G,

(a) (b)
Reproduced from [Boyd and Vandenberghe(2009)]: Convex Optimization

The normalized search direction of a discrete form is consistent with
the steepest search direction of a continuous form.
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Normalization approaches

1. Standard approach

D,=-M1G

v

2. DLMM normalization approach

The diagonally lumped mapping matrix (DLMM)

M, ::ZMU:A‘/I,,:/ R'dD, with Y R/ =1
J D J

d — _ gé _ _ngRldD
"My, [, RTdD
" Sensitivity weighting” method in
[Kiend| et al.(2014)Kiendl, Schmidt, WWiichner, and Bletzinger].
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Normalization approaches

3. B-Spline space (D) normalization

dl - _ngNIdD
" f5N"dD

4. Simplified DLMM approach
Unity of integral property of B-spline basis

JNPPdE 1
Civpr1—& p+1
(p+1)[58N'dD

§i+p+1 - fi
More information in [Wang et al.(2017a)Wang, Abdalla, and Turteltaub].

d =

n

)
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Effectiveness of the simplified DLMM approach

Discrete search
direction
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Effectiveness of the simplified DLMM approach

*— Normalized SD — Analytical SD ‘ —— Normalized SD Analytical SD
- - - Un-normalized SD O Design control points O Design control points
4 PPN\ Mesh 1 4 Mesh. 2
T
3 3
2 2
D
1 1
\
|
0 (@) 0
/
L -1
/7 D)
L2 norm error 2 ' -2
Mesh Approach 3 . -3
Standard DLMM  Simplified DLMM _—
4 —4
1 0.02121  0.02597 0.02476 ; ; ; i H i
2 0.02087  0.02140 0.02129 6 7 8 9 10 6 7 8 9 10
(a) (b)
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Normalization approaches

References:

o [Wang et al.(2017a)Wang, Abdalla, and Turteltaub]: Normalization
approaches for the descent search direction in isogeometric shape
optimization, CAD, 2017.

o [Kiendl et al.(2014)Kiendl, Schmidt, WWiichner, and Bletzinger]:
Isogeometric shape optimization of shells using semi-analytical
sensitivity analysis and sensitivity weighting, CMAME, 2014.

@ [Boyd and Vandenberghe(2009)]: Convex optimization, Cambridge
University Press, 2009.

e [Wang and Kumar(2017)]:On the numerical implementation of
continuous adjoint sensitivity for transient heat conduction problems
using an isogeometric approach, SMO, 2017.
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Outline

© Research trends
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@ Shape optimization techniques
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Research trends

@ Shape optimization techniques

@ Special applications of isogeometric shape optimization, e.g.,
o Auxetic structures design
[Wang et al.(2017b)Wang, Poh, Dirrenberger, Zhu, and Forest]
o Curved (laminated) shells
[Kiend! et al.(2014)Kiendl, Schmidt, WWiichner, and Bletzinger,
Nagy et al.(2013)Nagy, |Jsselmuiden, and Abdalla]
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Research trends

@ Shape optimization techniques
@ Special applications of isogeometric shape optimization, e.g.,

o Auxetic structures design
[Wang et al.(2017b)Wang, Poh, Dirrenberger, Zhu, and Forest]
o Curved (laminated) shells
[Kiend! et al.(2014)Kiendl, Schmidt, WWiichner, and Bletzinger,
Nagy et al.(2013)Nagy, |Jsselmuiden, and Abdalla]

@ Shape optimization using new analysis techniques, e.g.,

o Trimmed spline surface [Seo et al.(2010)Seo, Kim, and Youn]
o Bézier triangle based isogeometric shape optimization

[Wang et al.(2018)Wang, Xia, Wang, and Qian]
o Level set-based topology optimization

[Cai et al.(2014)Cai, Zhang, Zhu, and Gao]
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